BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 1610825)

  • 21. Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II.
    Hienerwadel R; Boussac A; Breton J; Berthomieu C
    Biochemistry; 1996 Dec; 35(48):15447-60. PubMed ID: 8952498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the QA vibrations in Rhodobacter sphaeroides using 18O- or 13C-labeled ubiquinone and vitamin K1.
    Breton J; Burie JR; Berthomieu C; Berger G; Nabedryk E
    Biochemistry; 1994 Apr; 33(16):4953-65. PubMed ID: 8161557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourier transforms infrared difference spectroscopy of secondary quinone acceptor photoreduction in proton transfer mutants of Rhodobacter sphaeroides.
    Nabedryk E; Breton J; Hienerwadel R; Fogel C; Mäntele W; Paddock ML; Okamura MY
    Biochemistry; 1995 Nov; 34(45):14722-32. PubMed ID: 7578080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones.
    Breton J
    Biochemistry; 2007 Apr; 46(15):4459-65. PubMed ID: 17381130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II.
    Zhang H; Razeghifard MR; Fischer G; Wydrzynski T
    Biochemistry; 1997 Sep; 36(39):11762-8. PubMed ID: 9305966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. B-branch electron transfer in the photosynthetic reaction center of a Rhodobacter sphaeroides quadruple mutant. Q- and W-band electron paramagnetic resonance studies of triplet and radical-pair cofactor states.
    Marchanka A; Savitsky A; Lubitz W; Möbius K; van Gastel M
    J Phys Chem B; 2010 Nov; 114(45):14364-72. PubMed ID: 20345158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilization of reduced primary quinone by proton uptake in reaction centers of Rhodobacter sphaeroides.
    Kálmán L; Maróti P
    Biochemistry; 1994 Aug; 33(31):9237-44. PubMed ID: 8049225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QA binding in reaction centers of the photosynthetic purple bacterium Rhodobacter sphaeroides R26 investigated with electron spin polarization spectroscopy.
    van den Brink JS; Hulsebosch RJ; Gast P; Hore PJ; Hoff AJ
    Biochemistry; 1994 Nov; 33(46):13668-77. PubMed ID: 7947775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron and proton transfer on the acceptor side of the reaction center in chromatophores of Rhodobacter capsulatus: evidence for direct protonation of the semiquinone state of QB.
    Lavergne J; Matthews C; Ginet N
    Biochemistry; 1999 Apr; 38(14):4542-52. PubMed ID: 10194376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center.
    Tiede DM; Vázquez J; Córdova J; Marone PA
    Biochemistry; 1996 Aug; 35(33):10763-75. PubMed ID: 8718867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction.
    Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K
    J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the primary donor environment in the histidineM200-->leucine and histidineL173-->leucine heterodimer mutants of Rhodobacter capsulatus by light-induced Fourier transform infrared difference spectroscopy.
    Nabedryk E; Robles SJ; Goldman E; Youvan DC; Breton J
    Biochemistry; 1992 Nov; 31(44):10852-8. PubMed ID: 1420198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of H+ ion binding by the P+QA-state of bacterial photosynthetic reaction centers: rate limitation within the protein.
    Maróti P; Wraight CA
    Biophys J; 1997 Jul; 73(1):367-81. PubMed ID: 9199801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The general kinetic model of electron transfer in photosynthetic reaction centers activated by multiple flashes.
    Shinkarev VP
    Photochem Photobiol; 1998 Jun; 67(6):683-99. PubMed ID: 9648534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An isotope-edited FTIR investigation of the role of Ser-L223 in binding quinone (QB) and semiquinone (QB-) in the reaction center from Rhodobacter sphaeroides.
    Nabedryk E; Paddock ML; Okamura MY; Breton J
    Biochemistry; 2005 Nov; 44(44):14519-27. PubMed ID: 16262252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles.
    Shinkarev VP; Wraight CA
    Biophys J; 1997 May; 72(5):2304-19. PubMed ID: 9129834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature dependence of the electrogenic reaction in the QB site of the Rhodobacter sphaeroides photosynthetic reaction center: the QA-QB --> QAQB- transition.
    Gopta OA; Bloch DA; Cherepanov DA; Mulkidjanian AY
    FEBS Lett; 1997 Aug; 412(3):490-4. PubMed ID: 9276452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Absence of a bicarbonate-depletion effect in electron transfer between quinones in chromatophores and reaction centers of Rhodobacter sphaeroides.
    Shopes RJ; Blubaugh DJ; Wraight CA; Govindjee
    Biochim Biophys Acta; 1989 Apr; 974(1):114-8. PubMed ID: 2647143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway of proton transfer in bacterial reaction centers: second-site mutation Asn-M44-->Asp restores electron and proton transfer in reaction centers from the photosynthetically deficient Asp-L213-->Asn mutant of Rhodobacter sphaeroides.
    Rongey SH; Paddock ML; Feher G; Okamura MY
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1325-9. PubMed ID: 8381964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibrational spectroscopy favors a unique QB binding site at the proximal position in wild-type reaction centers and in the Pro-L209 --> Tyr mutant from Rhodobacter sphaeroides.
    Breton J; Boullais C; Mioskowski C; Sebban P; Baciou L; Nabedryk E
    Biochemistry; 2002 Oct; 41(43):12921-7. PubMed ID: 12390017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.