BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1610835)

  • 41. P22 c2 repressor-operator complex: mechanisms of direct and indirect readout.
    Watkins D; Hsiao C; Woods KK; Koudelka GB; Williams LD
    Biochemistry; 2008 Feb; 47(8):2325-38. PubMed ID: 18237194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA twisting and the affinity of bacteriophage 434 operator for bacteriophage 434 repressor.
    Koudelka GB; Harbury P; Harrison SC; Ptashne M
    Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4633-7. PubMed ID: 3387430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3.
    Benevides JM; Weiss MA; Thomas GJ
    Biochemistry; 1991 Jun; 30(24):5955-63. PubMed ID: 1828373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the lambda complex at 2.5 A resolution: details of the repressor-operator interactions.
    Jordan SR; Pabo CO
    Science; 1988 Nov; 242(4880):893-9. PubMed ID: 3187530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA.
    Movileanu L; Benevides JM; Thomas GJ
    Nucleic Acids Res; 2002 Sep; 30(17):3767-77. PubMed ID: 12202762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anatomy of specific interactions between lambda repressor and operator DNA.
    Oobatake M; Kono H; Wang Y; Sarai A
    Proteins; 2003 Oct; 53(1):33-43. PubMed ID: 12945047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A thermodynamic study of the trp repressor-operator interaction.
    Ladbury JE; Wright JG; Sturtevant JM; Sigler PB
    J Mol Biol; 1994 May; 238(5):669-81. PubMed ID: 8182742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of the trp repressor with trp operator DNA fragments.
    Beckmann P; Martin SR; Lane AN
    Eur Biophys J; 1993; 21(6):417-24. PubMed ID: 8449174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sequence-dependent differences in DNA structure influence the affinity of P22 operator for P22 repressor.
    Wu L; Koudelka GB
    J Biol Chem; 1993 Sep; 268(25):18975-81. PubMed ID: 8395522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of amino acids in lac repressor protein cross-linked to operator DNA specifically substituted with bromodeoxyuridine.
    Allen TD; Wick KL; Matthews KS
    J Biol Chem; 1991 Apr; 266(10):6113-9. PubMed ID: 2007569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Secondary structure and interaction of phage D108 Ner repressor with a 61-base-pair operator: evidence for altered protein and DNA structures in the complex.
    Benevides JM; Kukolj G; Autexier C; Aubrey KL; DuBow MS; Thomas GJ
    Biochemistry; 1994 Sep; 33(35):10701-10. PubMed ID: 8075070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments.
    Takeda Y; Sarai A; Rivera VM
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):439-43. PubMed ID: 2911590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure, DNA minor groove binding, and base pair specificity of alkyl- and aryl-linked bis(amidinobenzimidazoles) and bis(amidinoindoles).
    Fairley TA; Tidwell RR; Donkor I; Naiman NA; Ohemeng KA; Lombardy RJ; Bentley JA; Cory M
    J Med Chem; 1993 Jun; 36(12):1746-53. PubMed ID: 8510102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conserved residues make similar contacts in two repressor-operator complexes.
    Pabo CO; Aggarwal AK; Jordan SR; Beamer LJ; Obeysekare UR; Harrison SC
    Science; 1990 Mar; 247(4947):1210-3. PubMed ID: 2315694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic activation of Escherichia coli methionine repressor.
    Phillips K; Phillips SE
    Structure; 1994 Apr; 2(4):309-16. PubMed ID: 8087557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT).
    Movileanu L; Benevides JM; Thomas GJ
    Biopolymers; 2002 Mar; 63(3):181-94. PubMed ID: 11787006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The basis for the super-repressor phenotypes of the AV77 and EK18 mutants of trp repressor.
    Grillo AO; Royer CA
    J Mol Biol; 2000 Jan; 295(1):17-28. PubMed ID: 10623505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative analysis of Tn10 Tet repressor binding to a complete set of tet operator mutants.
    Sizemore C; Wissmann A; Gülland U; Hillen W
    Nucleic Acids Res; 1990 May; 18(10):2875-80. PubMed ID: 2161514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.