These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16108423)

  • 1. A model for nucleation and growth of single wall carbon nanotubes via the HiPcO process: a catalyst concentration study.
    Carver RL; Peng H; Sadana AK; Nikolaev P; Arepalli S; Scott CD; Billups WE; Hauge RH; Smalley RE
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1035-40. PubMed ID: 16108423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process.
    Nikolaev P
    J Nanosci Nanotechnol; 2004 Apr; 4(4):307-16. PubMed ID: 15296221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis.
    Gökçen T; Dateo CE; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):535-44. PubMed ID: 12908292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics.
    Dateo CE; Gökçen T; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):523-34. PubMed ID: 12908291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide.
    Scott CD; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):75-9. PubMed ID: 12908232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel hybrid carbon material.
    Nasibulin AG; Pikhitsa PV; Jiang H; Brown DP; Krasheninnikov AV; Anisimov AS; Queipo P; Moisala A; Gonzalez D; Lientschnig G; Hassanien A; Shandakov SD; Lolli G; Resasco DE; Choi M; Tománek D; Kauppinen EI
    Nat Nanotechnol; 2007 Mar; 2(3):156-61. PubMed ID: 18654245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular hybrids of [60]fullerene and single-wall carbon nanotubes.
    Guldi DM; Menna E; Maggini M; Marcaccio M; Paolucci D; Paolucci F; Campidelli S; Prato M; Rahman GM; Schergna S
    Chemistry; 2006 May; 12(15):3975-83. PubMed ID: 16586415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent solubility of single-walled carbon nanotubes.
    Duque JG; Parra-Vasquez AN; Behabtu N; Green MJ; Higginbotham AL; Price BK; Leonard AD; Schmidt HK; Lounis B; Tour JM; Doorn SK; Cognet L; Pasquali M
    ACS Nano; 2010 Jun; 4(6):3063-72. PubMed ID: 20521799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.
    Einarsson E; Kadowaki M; Ogura K; Okawa J; Xiang R; Zhang Z; Yamamoto T; Ikuhara Y; Maruyama S
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6093-8. PubMed ID: 19198350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-walled carbon nanotube diameter.
    Jost O; Gorbunov A; Liu X; Pompe W; Fink J
    J Nanosci Nanotechnol; 2004 Apr; 4(4):433-40. PubMed ID: 15296234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests.
    Hasegawa K; Noda S; Sugime H; Kakehi K; Maruyama S; Yamaguchi Y
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6123-8. PubMed ID: 19198354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method.
    Ren W; Li F; Bai S; Cheng HM
    J Nanosci Nanotechnol; 2006 May; 6(5):1339-45. PubMed ID: 16792362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of carbon-containing compounds on solid catalysts for single-walled nanotube production.
    Resasco DE; Herrera JE; Balzano L
    J Nanosci Nanotechnol; 2004 Apr; 4(4):398-407. PubMed ID: 15296229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.
    Monzon A; Lolli G; Cosma S; Mohamed SB; Resasco DE
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6141-52. PubMed ID: 19198356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface.
    Zhao Q; Xu Z; Hu Y; Ding F; Zhang J
    Sci Adv; 2016 May; 2(5):e1501729. PubMed ID: 27386532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman-active modes of single-walled carbon nanotubes derived from the gas-phase decomposition of CO (HiPco process).
    Chen G; Sumanasekera GU; Pradhan BK; Gupta R; Eklund PC; Bronikowski MJ; Smalley RE
    J Nanosci Nanotechnol; 2002 Dec; 2(6):621-6. PubMed ID: 12908425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical pH response of DNA wrapped HiPco carbon nanotubes.
    Kelley K; Pehrsson PE; Ericson LM; Zhao W
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1041-4. PubMed ID: 16108424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method.
    Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM
    ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.