These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16108447)

  • 1. Design and performance of EUV resist containing photoacid generator for sub-100 nm lithography.
    Thiyagarajan M; Gonsalves KE; Dean K; Sykes CH
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1181-3. PubMed ID: 16108447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Acid Diffusion Control by Using Photoacid Generator Bound Polymer Resist.
    Jung JH; Kim MJ; Sohn KH; Kang HN; Kang MK; Lee H
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1764-6. PubMed ID: 26353729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of triphenylsulfonium triflate bound copolymer for electron beam lithography.
    Kwon O; Sagar AD; Kang HN; Kim HM; Kim KB; Lee H
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6270-3. PubMed ID: 25936102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of novel photoacid generator containing resist polymer for electron beam lithography.
    Lee KE; Kim MJ; Yool JB; Mondkar HS; Sohn K; Lee H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):725-9. PubMed ID: 22524047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modular Synthesis of Phthalaldehyde Derivatives Enabling Access to Photoacid Generator-Bound Self-Immolative Polymer Resists with Next-Generation Photolithographic Properties.
    Deng J; Bailey S; Jiang S; Ober CK
    J Am Chem Soc; 2022 Oct; 144(42):19508-19520. PubMed ID: 36208192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FT-IR study of a chemically amplified resist for X-ray lithography.
    Tan TL; Kudryashov VA; Tan BL
    Appl Spectrosc; 2003 Jul; 57(7):842-9. PubMed ID: 14658664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymerizable Nonionic Perfluorinated Photoacid Generators for High-Resolution Lithography.
    Liu Y; Wang D; Wang Q; Kang W
    Small Methods; 2024 Sep; ():e2400112. PubMed ID: 39308305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hydrophilic photoacid generator on acid diffusion in chemical amplification resists.
    Kang HN; Jung JH; Joo HS; Seo DC; Lee H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9662-4. PubMed ID: 25971116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of single-wall carbon nanotubes via a combined technique (chemical anchoring and photolithography) on patterned substrates.
    Jung MS; Jung SO; Jung DH; Ko YK; Jin YW; Kim J; Jung HT
    J Phys Chem B; 2005 Jun; 109(21):10584-9. PubMed ID: 16852284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of acid generation from ionic photoacid generators for extreme ultraviolet and electron beam lithography.
    Fu C; Du K; Xue J; Xin H; Zhang J; Li H
    Phys Chem Chem Phys; 2024 Jul; 26(27):18547-18556. PubMed ID: 38805008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submicron streptavidin patterns for protein assembly.
    Christman KL; Requa MV; Enriquez-Rios VD; Ward SC; Bradley KA; Turner KL; Maynard HD
    Langmuir; 2006 Aug; 22(17):7444-50. PubMed ID: 16893251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkless microcontact printing on SAMs of Boc- and TBS-protected thiols.
    Shestopalov AA; Clark RL; Toone EJ
    Nano Lett; 2010 Jan; 10(1):43-6. PubMed ID: 19950928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resist Materials for Extreme Ultraviolet Lithography: Toward Low-Cost Single-Digit-Nanometer Patterning.
    Ashby PD; Olynick DL; Ogletree DF; Naulleau PP
    Adv Mater; 2015 Oct; 27(38):5813-9. PubMed ID: 26079187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanophase separation and hindered glass transition in side-chain polymers.
    Beiner M; Huth H
    Nat Mater; 2003 Sep; 2(9):595-9. PubMed ID: 12942074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Sensitivity Resists for EUV Lithography: A Review of Material Design Strategies and Performance Results.
    Manouras T; Argitis P
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32823865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Mechanism-Based Descriptors for Extreme Ultraviolet-Induced Photoacid Generation: Key Factors Affecting Extreme Ultraviolet Sensitivity.
    Park JY; Song HJ; Nguyen TC; Son WJ; Kim D; Song G; Hong SK; Go H; Park C; Jang I; Kim DS
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.
    Xie Z; Chen C; Zhou X; Gao T; Liu D; Miao Q; Zheng Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11955-64. PubMed ID: 24417672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of End-Cap Enabled Self-Immolative Photoresists For Extreme Ultraviolet Lithography.
    Deng J; Bailey S; Ai R; Delmonico A; Denbeaux G; Jiang S; Ober CK
    ACS Macro Lett; 2022 Sep; 11(9):1049-1054. PubMed ID: 35948019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric Response Spectroscopy as Means to Investigate Interfacial Effects for Ultra-Thin Film Polymer-Based High NA EUV Lithography.
    Severi J; De Simone D; De Gendt S
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.