These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16108619)

  • 1. Magnetoresistance devices based on single-walled carbon nanotubes.
    Hod O; Rabani E; Baer R
    J Chem Phys; 2005 Aug; 123(5):051103. PubMed ID: 16108619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.
    Zaric S; Ostojic GN; Kono J; Shaver J; Moore VC; Strano MS; Hauge RH; Smalley RE; Wei X
    Science; 2004 May; 304(5674):1129-31. PubMed ID: 15155942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetoresistance of nanoscale molecular devices based on Aharonov-Bohm interferometry.
    Hod O; Baer R; Rabani E
    J Phys Condens Matter; 2008 Sep; 20(38):383201. PubMed ID: 21693808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers.
    Cao J; Wang Q; Rolandi M; Dai H
    Phys Rev Lett; 2004 Nov; 93(21):216803. PubMed ID: 15601048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of redox molecules on the electronic conductance of single-walled carbon nanotube field-effect transistors: application to chemical and biological sensing.
    Boussaad S; Diner BA; Fan J
    J Am Chem Soc; 2008 Mar; 130(12):3780-7. PubMed ID: 18321094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabry - Perot interference in a nanotube electron waveguide.
    Liang W; Bockrath M; Bozovic D; Hafner JH; Tinkham M; Park H
    Nature; 2001 Jun; 411(6838):665-9. PubMed ID: 11395762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetoresistance of nanoscale molecular devices.
    Hod O; Rabani E; Baer R
    Acc Chem Res; 2006 Feb; 39(2):109-17. PubMed ID: 16489730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes.
    Qian Z; Hou S; Ning J; Li R; Shen Z; Zhao X; Xue Z
    J Chem Phys; 2007 Feb; 126(8):084705. PubMed ID: 17343467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic current switching and negative differential resistance behavior in a molecular device based on carbon nanotubes.
    Xu Y; Fang C; Ji G; Du W; Li D; Liu D
    Phys Chem Chem Phys; 2012 Jan; 14(2):668-74. PubMed ID: 22101397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect magnetic coupling in light-element-doped single-walled carbon nanotubes.
    Krstić V; Ewels CP; Wågberg T; Ferreira MS; Janssens AM; Stéphan O; Glerup M
    ACS Nano; 2010 Sep; 4(9):5081-6. PubMed ID: 20684527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.
    Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J
    ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of niobium carbide contact for carbon-nanotube-based devices.
    Huang L; Chor EF; Wu Y; Guo Z
    Nanotechnology; 2010 Mar; 21(9):095201. PubMed ID: 20110580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field-effect characteristics and screening in double-walled carbon nanotube field-effect transistors.
    Wang S; Liang XL; Chen Q; Zhang ZY; Peng LM
    J Phys Chem B; 2005 Sep; 109(37):17361-5. PubMed ID: 16853219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin blockade in the conduction of colloidal CdSe nanocrystal films.
    Guyot-Sionnest P; Yu D; Jiang PH; Kang W
    J Chem Phys; 2007 Jul; 127(1):014702. PubMed ID: 17627359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic magnetoresistance of single-walled carbon nanotubes probed by a noncontact method.
    Oshima Y; Takenobu T; Yanagi K; Miyata Y; Kataura H; Hata K; Iwasa Y; Nojiri H
    Phys Rev Lett; 2010 Jan; 104(1):016803. PubMed ID: 20366380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties.
    Dong L; Chirayos V; Bush J; Jiao J; Dubin VM; Chebian RV; Ono Y; Conley JF; Ulrich BD
    J Phys Chem B; 2005 Jul; 109(27):13148-53. PubMed ID: 16852637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties and reactivity of Pt-doped carbon nanotubes.
    Tian WQ; Liu LV; Wang YA
    Phys Chem Chem Phys; 2006 Aug; 8(30):3528-39. PubMed ID: 16871342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.