These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 16108637)

  • 21. Monte Carlo studies of isomers, structures, and properties in benzene-cyclohexane clusters: computation strategy and application to the dimer and trimer, (C6H6)(C6H12)n, n = 1-2.
    Easter DC; Terrell DA; Roof JA
    J Phys Chem A; 2005 Feb; 109(4):673-89. PubMed ID: 16833394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations.
    Ma J; Michaelides A; Alfè D
    J Chem Phys; 2011 Apr; 134(13):134701. PubMed ID: 21476763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and van der Waals interactions.
    Santra B; Michaelides A; Fuchs M; Tkatchenko A; Filippi C; Scheffler M
    J Chem Phys; 2008 Nov; 129(19):194111. PubMed ID: 19026049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers.
    Gurtubay IG; Drummond ND; Towler MD; Needs RJ
    J Chem Phys; 2006 Jan; 124(2):024318. PubMed ID: 16422594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical studies of the CO2-N2O van der Waals complex: ab initio potential energy surface, intermolecular vibrations, and rotational transition frequencies.
    Zheng L; Lee SY; Lu Y; Yang M
    J Chem Phys; 2013 Jan; 138(4):044302. PubMed ID: 23387579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and dynamics of the aniline-argon complex as derived from its potential energy surface.
    Makarewicz J
    J Phys Chem A; 2007 Mar; 111(8):1498-507. PubMed ID: 17279733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum Monte Carlo study of the ground state and low-lying excited states of the scandium dimer.
    Matxain JM; Rezabal E; Lopez X; Ugalde JM; Gagliardi L
    J Chem Phys; 2008 May; 128(19):194315. PubMed ID: 18500873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral Lineshape Parameters Revisited for HF in a Bath of Argon.
    Grigoriev IM; Le Doucen R ; Boissoles J; Calil B; Boulet C; Hartmann JM; Bruet X; Dubernet ML
    J Mol Spectrosc; 1999 Dec; 198(2):249-256. PubMed ID: 10547307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of the He-HF+ complex. I. The two asymptotically degenerate ground state potential energy surfaces.
    Lotrich VF; Wormer PE; van der Avoird A
    J Chem Phys; 2004 Jan; 120(1):93-102. PubMed ID: 15267265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate ab initio and "hybrid" potential energy surfaces, intramolecular vibrational energies, and classical ir spectrum of the water dimer.
    Shank A; Wang Y; Kaledin A; Braams BJ; Bowman JM
    J Chem Phys; 2009 Apr; 130(14):144314. PubMed ID: 19368452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A three-dimensional ab initio potential energy surface and predicted infrared spectra for the He-N2O complex.
    Zhou Y; Xie D; Zhang DH
    J Chem Phys; 2006 Apr; 124(14):144317. PubMed ID: 16626206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Snowballs, quantum solvation and coordination: lead ions inside small helium droplets.
    Slavícek P; Lewerenz M
    Phys Chem Chem Phys; 2010 Feb; 12(5):1152-61. PubMed ID: 20094680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined experimental and theoretical study of the benzocaine/Ar van der Waals system in supersonic expansions.
    León I; Aguado E; Lesarri A; Fernández JA; Castaño F
    J Phys Chem A; 2009 Feb; 113(6):982-8. PubMed ID: 19193171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of molybdenum and tungsten sulfide M(x)S(y)+ clusters: experiment and DFT calculations.
    Patterson MJ; Lightstone JM; White MG
    J Phys Chem A; 2008 Nov; 112(47):12011-21. PubMed ID: 18980366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The structure and binding energies of the van der Waals complexes of Ar and N2 with phenol and its cation, studied by high level ab initio and density functional theory calculations.
    Vincent MA; Hillier IH; Morgado CA; Burton NA; Shan X
    J Chem Phys; 2008 Jan; 128(4):044313. PubMed ID: 18247955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential energy surface, van der Waals motions, and vibronic transitions in phenol-argon complex.
    Makarewicz J
    J Chem Phys; 2006 Feb; 124(8):084310. PubMed ID: 16512719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of noncovalent interactions on the n-butylbenzene...Ar cluster studied by mass analyzed threshold ionization spectroscopy and ab initio computations.
    Tong X; Cerný J; Müller-Dethlefs K
    J Phys Chem A; 2008 Jul; 112(26):5872-7. PubMed ID: 18533640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio potential energy surface and predicted microwave spectra for Ar--OCS dimer and structures of Arn--OCS (n = 2-14) clusters.
    Zhu H; Guo Y; Xue Y; Xie D
    J Comput Chem; 2006 Jul; 27(9):1045-53. PubMed ID: 16639699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.