BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16108674)

  • 21. Vibrational energy relaxation of a diatomic molecule in a room-temperature ionic liquid.
    Shim Y; Kim HJ
    J Chem Phys; 2006 Jul; 125(2):24507. PubMed ID: 16848592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibrational energy relaxation of naphthalene in the S(1) state in various gases.
    Kimura Y; Abe D; Terazima M
    J Chem Phys; 2004 Sep; 121(12):5794-800. PubMed ID: 15367005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of the influence of solute-solvent interactions on the vibrational energy relaxation dynamics of large molecules in liquids.
    Pigliucci A; Duvanel G; Daku LM; Vauthey E
    J Phys Chem A; 2007 Jul; 111(28):6135-45. PubMed ID: 17591756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman spectroscopic study on the solvation of N,N-dimethyl-p-nitroaniline in room-temperature ionic liquids.
    Kimura Y; Hamamoto T; Terazima M
    J Phys Chem A; 2007 Aug; 111(30):7081-9. PubMed ID: 17622125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OD stretch vibrational relaxation of HOD in liquid to supercritical H(2)O.
    Schäfer T; Lindner J; Vöhringer P; Schwarzer D
    J Chem Phys; 2009 Jun; 130(22):224502. PubMed ID: 19530775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transfer reaction dynamics of p-nitroaniline in water from liquid to supercritical conditions.
    Osawa K; Terazima M; Kimura Y
    J Phys Chem B; 2012 Sep; 116(37):11508-16. PubMed ID: 22909090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relaxation of OH (v=1) and OD (v=1) by H2O and D2O at temperatures from 251 to 390 K.
    McCabe DC; Rajakumar B; Marshall P; Smith IW; Ravishankara AR
    Phys Chem Chem Phys; 2006 Oct; 8(39):4563-74. PubMed ID: 17047754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrational relaxation of NO (v = 1-16) with NO, N2O, NO2, He and Ar studied by time-resolved Fourier transform infrared emission.
    Hancock G; Morrison M; Saunders M
    Phys Chem Chem Phys; 2009 Oct; 11(38):8507-15. PubMed ID: 19774281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical determination of rate constants for vibrational relaxation and reaction of OH(X 2Pi, v = 1) with O(3P) atoms.
    Kłos JA; Lique F; Alexander MH; Dagdigian PJ
    J Chem Phys; 2008 Aug; 129(6):064306. PubMed ID: 18715068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vibrational energy relaxation of a hydrogen-bonded complex dissolved in a polar liquid via the mixed quantum-classical Liouville method.
    Hanna G; Geva E
    J Phys Chem B; 2008 Apr; 112(13):4048-58. PubMed ID: 18331018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational relaxation of normal and deuterated liquid nitromethane.
    Shigeto S; Pang Y; Fang Y; Dlott DD
    J Phys Chem B; 2008 Jan; 112(2):232-41. PubMed ID: 17685649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The He-LiH potential energy surface revisited. II. Rovibrational energy transfer on a three-dimensional surface.
    Taylor BK; Hinde RJ
    J Chem Phys; 2005 Feb; 122(7):074308. PubMed ID: 15743233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. State-to-state scattering of D2 from Cu(100) and Pd(111).
    Shackman LC; Sitz GO
    J Chem Phys; 2005 Aug; 123(6):64712. PubMed ID: 16122340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quenching of highly vibrationally excited pyrimidine by collisions with CO2.
    Johnson JA; Duffin AM; Hom BJ; Jackson KE; Sevy ET
    J Chem Phys; 2008 Feb; 128(5):054304. PubMed ID: 18266447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent effects on the local structure of p-nitroaniline in supercritical water and supercritical alcohols.
    Fujisawa T; Terazima M; Kimura Y
    J Phys Chem A; 2008 Jun; 112(24):5515-26. PubMed ID: 18481841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast dynamics of the azobenzene-coumarin complex: investigation of cooling dynamics measured by an integrated molecular thermometer.
    Velate S; Danilov EO; Rodgers MA
    J Phys Chem A; 2005 Oct; 109(40):8969-75. PubMed ID: 16331999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new ab initio potential energy surface for studying vibrational relaxation in NO(v) + NO collisions.
    Pajón-Suárez P; Rubayo-Soneira J; Hernández-Lamoneda R
    J Phys Chem A; 2011 Apr; 115(13):2892-9. PubMed ID: 21410176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational relaxation of CN stretch of pseudo-halide anions (OCN-, SCN-, and SeCN-) in polar solvents.
    Lenchenkov V; She C; Lian T
    J Phys Chem B; 2006 Oct; 110(40):19990-7. PubMed ID: 17020387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulation of cooling: heat transfer from a photoexcited peptide to the solvent.
    Park SM; Nguyen PH; Stock G
    J Chem Phys; 2009 Nov; 131(18):184503. PubMed ID: 19916608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.