These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 1610879)
1. Interaction of dipyridamole with micelles of lysophosphatidylcholine and with bovine serum albumin: fluorescence studies. Tabak M; Borisevitch IE Biochim Biophys Acta; 1992 Jun; 1116(3):241-9. PubMed ID: 1610879 [TBL] [Abstract][Full Text] [Related]
2. Localization of dipyridamole molecules in ionic micelles: effect of micelle and drug charges. Borissevitch IE; Borges CP; Yushmanov VE; Tabak M Biochim Biophys Acta; 1995 Aug; 1238(1):57-62. PubMed ID: 7654751 [TBL] [Abstract][Full Text] [Related]
3. Different Micellar Packing and Hydrophobicity of the Membrane Probes TEMPO and TEMPOL Influence Their Partition Between Aqueous and Micellar Phases Rather than Location in the Micelle Interior. Almeida LE; Borissevitch IE; Yushmanov VE; Tabak M J Colloid Interface Sci; 1998 Jul; 203(2):456-63. PubMed ID: 9705783 [TBL] [Abstract][Full Text] [Related]
4. Binding of dipyridamole to phospholipid vesicles: a fluorescence study. Nassar PM; Almeida LE; Tabak M Biochim Biophys Acta; 1997 Sep; 1328(2):140-50. PubMed ID: 9315611 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic oxidation of dipyridamole in homogeneous and micellar solutions in the horseradish peroxidase-hydrogen peroxide system. Almeida LE; Imasato H; Tabak M Biochim Biophys Acta; 2006 Feb; 1760(2):216-26. PubMed ID: 16310957 [TBL] [Abstract][Full Text] [Related]
6. Milk caseins as useful vehicle for delivery of dipyridamole drug. Dezhampanah H; Esmaili M; Hasani L J Biomol Struct Dyn; 2018 May; 36(6):1602-1616. PubMed ID: 28521571 [TBL] [Abstract][Full Text] [Related]
7. Interaction of Chlorpromazine and Trifluoperazine with Anionic Sodium Dodecyl Sulfate (SDS) Micelles: Electronic Absorption and Fluorescence Studies. Caetano W; Tabak M J Colloid Interface Sci; 2000 May; 225(1):69-81. PubMed ID: 10767147 [TBL] [Abstract][Full Text] [Related]
8. Absorption and fluorescence study of the interaction between (2-hydroxy-benzimido)ethyl-n-hexylselenide and bovine serum albumin. Chang-Ying Y; Yi L; Jun W; Ran L; Yan-Jun H; Song-Sheng Q J Pharm Pharmacol; 2004 Sep; 56(9):1127-33. PubMed ID: 15324481 [TBL] [Abstract][Full Text] [Related]
9. Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Aliaga C; Bravo-Moraga F; Gonzalez-Nilo D; Márquez S; Lühr S; Mena G; Rezende MC Food Chem; 2016 Feb; 192():395-401. PubMed ID: 26304365 [TBL] [Abstract][Full Text] [Related]
10. Dipyridamole Interacts with the Polar Part of Cationic Reversed Micelles in Chloroform: 1H NMR and ESR Evidence. Yushmanov VE; Tabak M J Colloid Interface Sci; 1997 Jul; 191(2):384-90. PubMed ID: 9268521 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence Behavior of Schiff Base-N, N'-bis(salicylidene) Trans 1, 2-Diaminocyclohexane in Proteinous and Micellar Environments. Roy N; Nath S; Paul PC; Singh TS J Fluoresc; 2017 Nov; 27(6):2295-2311. PubMed ID: 28831629 [TBL] [Abstract][Full Text] [Related]
12. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles. Tortech L; Jaxel C; Vincent M; Gallay J; de Foresta B Biochim Biophys Acta; 2001 Sep; 1514(1):76-86. PubMed ID: 11513806 [TBL] [Abstract][Full Text] [Related]
13. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers. Tang Y; Liu SY; Armes SP; Billingham NC Biomacromolecules; 2003; 4(6):1636-45. PubMed ID: 14606890 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Giacomelli C; Le Men L; Borsali R; Lai-Kee-Him J; Brisson A; Armes SP; Lewis AL Biomacromolecules; 2006 Mar; 7(3):817-28. PubMed ID: 16529419 [TBL] [Abstract][Full Text] [Related]
15. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study. Andley UP; Clark BA Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065 [TBL] [Abstract][Full Text] [Related]
16. Binding and location of dipyridamole derivatives in micelles: the role of drug molecular structure and charge. Borissevitch IE; Borges CP; Borissevitch GP; Yushmanov VE; Louro SR; Tabak M Z Naturforsch C J Biosci; 1996; 51(7-8):578-90. PubMed ID: 8810098 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic studies on the interaction of riboflavin with bovine serum albumin. Kamat BP; Seetharamappa J; Melwanki MB Indian J Biochem Biophys; 2004 Aug; 41(4):173-8. PubMed ID: 22900349 [TBL] [Abstract][Full Text] [Related]
18. On the localization of water-soluble porphyrins in micellar systems evaluated by static and time-resolved frequency-domain fluorescence techniques. Santiago PS; Neto Dde S; Gandini SC; Tabak M Colloids Surf B Biointerfaces; 2008 Sep; 65(2):247-56. PubMed ID: 18539441 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of Fluorescence Quenching of Pyrene in Novel Micelles of the Zwitterionic Betaine Surfactant N-(3-Dodecyloxy-2-hydroxypropyl)-N,N-dimethylglycine. Guan JQ; Tung CH J Colloid Interface Sci; 1998 Dec; 208(1):90-95. PubMed ID: 9820752 [TBL] [Abstract][Full Text] [Related]
20. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Gharagozlou M; Boghaei DM Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]