These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 16108922)
1. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Niessen J; Schröder U; Harnisch F; Scholz F Lett Appl Microbiol; 2005; 41(3):286-90. PubMed ID: 16108922 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Ren Z; Ward TE; Logan BE; Regan JM J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409 [TBL] [Abstract][Full Text] [Related]
3. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R; Cicek N; Sparling R; Levin D Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122 [TBL] [Abstract][Full Text] [Related]
4. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Ren Z; Steinberg LM; Regan JM Water Sci Technol; 2008; 58(3):617-22. PubMed ID: 18725730 [TBL] [Abstract][Full Text] [Related]
5. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. Desvaux M FEMS Microbiol Rev; 2005 Sep; 29(4):741-64. PubMed ID: 16102601 [TBL] [Abstract][Full Text] [Related]
7. Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum. Islam R; Sparling R; Cicek N; Levin DB Int J Mol Sci; 2015 Jan; 16(2):3116-32. PubMed ID: 25647413 [TBL] [Abstract][Full Text] [Related]
8. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. Zhang SC; Lai QH; Lu Y; Liu ZD; Wang TM; Zhang C; Xing XH J Biosci Bioeng; 2016 Oct; 122(4):482-7. PubMed ID: 27150511 [TBL] [Abstract][Full Text] [Related]
9. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Rismani-Yazdi H; Christy AD; Dehority BA; Morrison M; Yu Z; Tuovinen OH Biotechnol Bioeng; 2007 Aug; 97(6):1398-407. PubMed ID: 17274068 [TBL] [Abstract][Full Text] [Related]
10. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Rosenbaum M; Schröder U; Scholz F Appl Microbiol Biotechnol; 2005 Oct; 68(6):753-6. PubMed ID: 15696280 [TBL] [Abstract][Full Text] [Related]
11. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum. Magnusson L; Cicek N; Sparling R; Levin D Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175 [TBL] [Abstract][Full Text] [Related]
12. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R; Li S; Zhang X; Wang L Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397 [TBL] [Abstract][Full Text] [Related]
13. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum. Holwerda EK; Lynd LR Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291 [TBL] [Abstract][Full Text] [Related]
14. Electricity generation by thermophilic microorganisms from marine sediment. Mathis BJ; Marshall CW; Milliken CE; Makkar RS; Creager SE; May HD Appl Microbiol Biotechnol; 2008 Feb; 78(1):147-55. PubMed ID: 18080121 [TBL] [Abstract][Full Text] [Related]
15. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Salimi F; Zhuang K; Mahadevan R Biotechnol J; 2010 Jul; 5(7):726-38. PubMed ID: 20665645 [TBL] [Abstract][Full Text] [Related]
16. Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Zverlov VV; Schwarz WH Ann N Y Acad Sci; 2008 Mar; 1125():298-307. PubMed ID: 18378600 [TBL] [Abstract][Full Text] [Related]
17. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Lü Y; Li N; Yuan X; Hua B; Wang J; Ishii M; Igarashi Y; Cui Z Appl Biochem Biotechnol; 2013 Dec; 171(7):1578-88. PubMed ID: 23975281 [TBL] [Abstract][Full Text] [Related]
19. Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Sund CJ; McMasters S; Crittenden SR; Harrell LE; Sumner JJ Appl Microbiol Biotechnol; 2007 Sep; 76(3):561-8. PubMed ID: 17562040 [TBL] [Abstract][Full Text] [Related]
20. Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor. Reed PT; Izquierdo JA; Lynd LR Bioresour Technol; 2014 Mar; 155():50-6. PubMed ID: 24413481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]