These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16109474)

  • 21. Subsequence-based feature map for protein function classification.
    Sarac OS; Gürsoy-Yüzügüllü O; Cetin-Atalay R; Atalay V
    Comput Biol Chem; 2008 Apr; 32(2):122-30. PubMed ID: 18243801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Finding motifs from all sequences with and without binding sites.
    Leung HC; Chin FY
    Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FASSM: enhanced function association in whole genome analysis using sequence and structural motifs.
    Gaurav K; Gupta N; Sowdhamini R
    In Silico Biol; 2005; 5(5-6):425-38. PubMed ID: 16268788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of unsupervised and supervised artificial neural networks for the identification of lactic acid bacteria on the basis of SDS-PAGE patterns of whole cell proteins.
    Piraino P; Ricciardi A; Salzano G; Zotta T; Parente E
    J Microbiol Methods; 2006 Aug; 66(2):336-46. PubMed ID: 16480784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data augmentation algorithms for detecting conserved domains in protein sequences: a comparative study.
    Bi C
    J Proteome Res; 2008 Jan; 7(1):192-201. PubMed ID: 18081244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Organizing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes.
    Abe T; Sugawara H; Kanaya S; Kinouchi M; Ikemura T
    Gene; 2006 Jan; 365():27-34. PubMed ID: 16364569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of N-linked glycan branching patterns using artificial neural networks.
    Senger RS; Karim MN
    Math Biosci; 2008 Jan; 211(1):89-104. PubMed ID: 18054050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SubSeqer: a graph-based approach for the detection and identification of repetitive elements in low-complexity sequences.
    He D; Parkinson J
    Bioinformatics; 2008 Apr; 24(7):1016-7. PubMed ID: 18304932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fitting a geometric graph to a protein-protein interaction network.
    Higham DJ; Rasajski M; Przulj N
    Bioinformatics; 2008 Apr; 24(8):1093-9. PubMed ID: 18344248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating regression formulas and kernel functions into locally adaptive knowledge-based neural networks: a case study on renal function evaluation.
    Song Q; Kasabov N; Ma T; Marshall MR
    Artif Intell Med; 2006 Mar; 36(3):235-44. PubMed ID: 16213694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motif-based protein sequence classification using neural networks.
    Blekas K; Fotiadis DI; Likas A
    J Comput Biol; 2005; 12(1):64-82. PubMed ID: 15725734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. indel-Seq-Gen: a new protein family simulator incorporating domains, motifs, and indels.
    Strope CL; Scott SD; Moriyama EN
    Mol Biol Evol; 2007 Mar; 24(3):640-9. PubMed ID: 17158778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An enhanced self-organizing incremental neural network for online unsupervised learning.
    Furao S; Ogura T; Hasegawa O
    Neural Netw; 2007 Oct; 20(8):893-903. PubMed ID: 17826947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sesquiterpene lactone-based classification of three Asteraceae tribes: a study based on self-organizing neural networks applied to chemosystematics.
    Da Costa FB; Terfloth L; Gasteiger J
    Phytochemistry; 2005 Feb; 66(3):345-53. PubMed ID: 15680991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovering sequence motifs with arbitrary insertions and deletions.
    Frith MC; Saunders NF; Kobe B; Bailey TL
    PLoS Comput Biol; 2008 May; 4(4):e1000071. PubMed ID: 18437229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural network method to determine the vigilance levels of the central nervous system, related to occupational chronic chemical stress.
    Tuulik V; Raja A; Meister A; Lossmann E
    Technol Health Care; 1997 Jul; 5(3):243-51. PubMed ID: 9263373
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A principal components analysis self-organizing map.
    López-Rubio E; Muñoz-Pérez J; Gómez-Ruiz JA
    Neural Netw; 2004 Mar; 17(2):261-70. PubMed ID: 15036343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RefSelect: a reference sequence selection algorithm for planted (l, d) motif search.
    Yu Q; Huo H; Zhao R; Feng D; Vitter JS; Huan J
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):266. PubMed ID: 27454113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A self-organizing neural tree for large-set pattern classification.
    Song HH; Lee SW
    IEEE Trans Neural Netw; 1998; 9(3):369-80. PubMed ID: 18252462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.