BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 16109708)

  • 1. Microfluidic device for rapid (<15 min) automated microarray hybridization.
    Peytavi R; Raymond FR; Gagné D; Picard FJ; Jia G; Zoval J; Madou M; Boissinot K; Boissinot M; Bissonnette L; Ouellette M; Bergeron MG
    Clin Chem; 2005 Oct; 51(10):1836-44. PubMed ID: 16109708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recirculating flow accelerates DNA microarray hybridization in a microfluidic device.
    Lee HH; Smoot J; McMurray Z; Stahl DA; Yager P
    Lab Chip; 2006 Sep; 6(9):1163-70. PubMed ID: 16929395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays.
    Yuen PK; Li G; Bao Y; Muller UR
    Lab Chip; 2003 Feb; 3(1):46-50. PubMed ID: 15100805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.
    Martins D; Wei X; Levicky R; Song YA
    Anal Chem; 2016 Apr; 88(7):3539-47. PubMed ID: 26916577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk.
    Chen H; Wang L; Li PC
    Lab Chip; 2008 May; 8(5):826-9. PubMed ID: 18432357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device.
    Wang L; Li PC; Yu HZ; Parameswaran AM
    Anal Chim Acta; 2008 Mar; 610(1):97-104. PubMed ID: 18267145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multilevel Lab on chip platform for DNA analysis.
    Marasso SL; Giuri E; Canavese G; Castagna R; Quaglio M; Ferrante I; Perrone D; Cocuzza M
    Biomed Microdevices; 2011 Feb; 13(1):19-27. PubMed ID: 20827509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s.
    Wei CW; Cheng JY; Huang CT; Yen MH; Young TH
    Nucleic Acids Res; 2005 May; 33(8):e78. PubMed ID: 15891111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar chip device for PCR and hybridization with surface acoustic wave pump.
    Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A
    Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis.
    Han CM; Katilius E; Santiago JG
    Lab Chip; 2014 Aug; 14(16):2958-67. PubMed ID: 24921466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis.
    Jiang X; Shao N; Jing W; Tao S; Liu S; Sui G
    Talanta; 2014 May; 122():246-50. PubMed ID: 24720991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection.
    Bowden M; Song L; Walt DR
    Anal Chem; 2005 Sep; 77(17):5583-8. PubMed ID: 16131069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.
    Huang SH; Chang YS; Juang JJ; Chang KW; Tsai MH; Lu TP; Lai LC; Chuang EY; Huang NT
    Analyst; 2018 Mar; 143(6):1367-1377. PubMed ID: 29423467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated microfluidic biochips for DNA microarray analysis.
    Liu RH; Dill K; Fuji HS; McShea A
    Expert Rev Mol Diagn; 2006 Mar; 6(2):253-61. PubMed ID: 16512784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Method for automated extraction and purification of nucleic acids and its implementation in microfluidic system].
    Mamaev DD; Khodakov DA; Dement'eva EI; Filatov IV; Iurasov DA; Cherepanov AI; Vasiliskov VA; Smoldovskaia OV; Zimenkov DV; Griadunov DA; Mikhaĭlovich VM; Zasedatelev AS
    Prikl Biokhim Mikrobiol; 2011; 47(2):231-40. PubMed ID: 22808749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions.
    Penchovsky R
    Lab Chip; 2013 Jun; 13(12):2370-80. PubMed ID: 23645132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic DNA microarray analysis: a review.
    Wang L; Li PC
    Anal Chim Acta; 2011 Feb; 687(1):12-27. PubMed ID: 21241842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis.
    Ying L; Wang Q
    BMC Biotechnol; 2013 Sep; 13():76. PubMed ID: 24070124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA.
    Dodge A; Turcatti G; Lawrence I; de Rooij NF; Verpoorte E
    Anal Chem; 2004 Mar; 76(6):1778-87. PubMed ID: 15018583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.