These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 16109708)
1. Microfluidic device for rapid (<15 min) automated microarray hybridization. Peytavi R; Raymond FR; Gagné D; Picard FJ; Jia G; Zoval J; Madou M; Boissinot K; Boissinot M; Bissonnette L; Ouellette M; Bergeron MG Clin Chem; 2005 Oct; 51(10):1836-44. PubMed ID: 16109708 [TBL] [Abstract][Full Text] [Related]
2. Recirculating flow accelerates DNA microarray hybridization in a microfluidic device. Lee HH; Smoot J; McMurray Z; Stahl DA; Yager P Lab Chip; 2006 Sep; 6(9):1163-70. PubMed ID: 16929395 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Yuen PK; Li G; Bao Y; Muller UR Lab Chip; 2003 Feb; 3(1):46-50. PubMed ID: 15100805 [TBL] [Abstract][Full Text] [Related]
4. Fully integrated miniature device for automated gene expression DNA microarray processing. Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436 [TBL] [Abstract][Full Text] [Related]
5. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization. Martins D; Wei X; Levicky R; Song YA Anal Chem; 2016 Apr; 88(7):3539-47. PubMed ID: 26916577 [TBL] [Abstract][Full Text] [Related]
6. Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk. Chen H; Wang L; Li PC Lab Chip; 2008 May; 8(5):826-9. PubMed ID: 18432357 [TBL] [Abstract][Full Text] [Related]
7. Fungal pathogenic nucleic acid detection achieved with a microfluidic microarray device. Wang L; Li PC; Yu HZ; Parameswaran AM Anal Chim Acta; 2008 Mar; 610(1):97-104. PubMed ID: 18267145 [TBL] [Abstract][Full Text] [Related]
8. A multilevel Lab on chip platform for DNA analysis. Marasso SL; Giuri E; Canavese G; Castagna R; Quaglio M; Ferrante I; Perrone D; Cocuzza M Biomed Microdevices; 2011 Feb; 13(1):19-27. PubMed ID: 20827509 [TBL] [Abstract][Full Text] [Related]
9. Using a microfluidic device for 1 microl DNA microarray hybridization in 500 s. Wei CW; Cheng JY; Huang CT; Yen MH; Young TH Nucleic Acids Res; 2005 May; 33(8):e78. PubMed ID: 15891111 [TBL] [Abstract][Full Text] [Related]
10. Planar chip device for PCR and hybridization with surface acoustic wave pump. Guttenberg Z; Muller H; Habermüller H; Geisbauer A; Pipper J; Felbel J; Kielpinski M; Scriba J; Wixforth A Lab Chip; 2005 Mar; 5(3):308-17. PubMed ID: 15726207 [TBL] [Abstract][Full Text] [Related]
11. Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis. Han CM; Katilius E; Santiago JG Lab Chip; 2014 Aug; 14(16):2958-67. PubMed ID: 24921466 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Jiang X; Shao N; Jing W; Tao S; Liu S; Sui G Talanta; 2014 May; 122():246-50. PubMed ID: 24720991 [TBL] [Abstract][Full Text] [Related]
13. Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection. Bowden M; Song L; Walt DR Anal Chem; 2005 Sep; 77(17):5583-8. PubMed ID: 16131069 [TBL] [Abstract][Full Text] [Related]
14. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases. Huang SH; Chang YS; Juang JJ; Chang KW; Tsai MH; Lu TP; Lai LC; Chuang EY; Huang NT Analyst; 2018 Mar; 143(6):1367-1377. PubMed ID: 29423467 [TBL] [Abstract][Full Text] [Related]
15. Integrated microfluidic biochips for DNA microarray analysis. Liu RH; Dill K; Fuji HS; McShea A Expert Rev Mol Diagn; 2006 Mar; 6(2):253-61. PubMed ID: 16512784 [TBL] [Abstract][Full Text] [Related]
16. [Method for automated extraction and purification of nucleic acids and its implementation in microfluidic system]. Mamaev DD; Khodakov DA; Dement'eva EI; Filatov IV; Iurasov DA; Cherepanov AI; Vasiliskov VA; Smoldovskaia OV; Zimenkov DV; Griadunov DA; Mikhaĭlovich VM; Zasedatelev AS Prikl Biokhim Mikrobiol; 2011; 47(2):231-40. PubMed ID: 22808749 [TBL] [Abstract][Full Text] [Related]
17. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions. Penchovsky R Lab Chip; 2013 Jun; 13(12):2370-80. PubMed ID: 23645132 [TBL] [Abstract][Full Text] [Related]
18. Microfluidic DNA microarray analysis: a review. Wang L; Li PC Anal Chim Acta; 2011 Feb; 687(1):12-27. PubMed ID: 21241842 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic chip-based technologies: emerging platforms for cancer diagnosis. Ying L; Wang Q BMC Biotechnol; 2013 Sep; 13():76. PubMed ID: 24070124 [TBL] [Abstract][Full Text] [Related]
20. A microfluidic platform using molecular beacon-based temperature calibration for thermal dehybridization of surface-bound DNA. Dodge A; Turcatti G; Lawrence I; de Rooij NF; Verpoorte E Anal Chem; 2004 Mar; 76(6):1778-87. PubMed ID: 15018583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]