These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16109938)

  • 1. The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445.
    Dubern JF; Lagendijk EL; Lugtenberg BJ; Bloemberg GV
    J Bacteriol; 2005 Sep; 187(17):5967-76. PubMed ID: 16109938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of environmental conditions on putisolvins I and II production in Pseudomonas putida strain PCL1445.
    Dubern JF; Bloemberg GV
    FEMS Microbiol Lett; 2006 Oct; 263(2):169-75. PubMed ID: 16978352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II.
    Dubern JF; Lugtenberg BJ; Bloemberg GV
    J Bacteriol; 2006 Apr; 188(8):2898-906. PubMed ID: 16585751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445.
    Dubern JF; Coppoolse ER; Stiekema WJ; Bloemberg GV
    Microbiology (Reading); 2008 Jul; 154(Pt 7):2070-2083. PubMed ID: 18599835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms.
    Kuiper I; Lagendijk EL; Pickford R; Derrick JP; Lamers GE; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Microbiol; 2004 Jan; 51(1):97-113. PubMed ID: 14651614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants.
    Tilly K; Hauser R; Campbell J; Ostheimer GJ
    Mol Microbiol; 1993 Feb; 7(3):359-69. PubMed ID: 8459764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283.
    Ishikawa M; Okamoto-Kainuma A; Jochi T; Suzuki I; Matsui K; Kaga T; Koizumi Y
    J Biosci Bioeng; 2010 Jan; 109(1):25-31. PubMed ID: 20129077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100.
    Kedzierska S; Matuszewska E
    FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32.
    Gamer J; Bujard H; Bukau B
    Cell; 1992 May; 69(5):833-42. PubMed ID: 1534276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of stress-responsive genes, hrcA-grpE-dnaK-dnaJ, from phytopathogenic Xanthomonas campestris.
    Weng SF; Tai PM; Yang CH; Wu CD; Tsai WJ; Lin JW; Tseng YH
    Arch Microbiol; 2001 Jul; 176(1-2):121-8. PubMed ID: 11479711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, nucleotide sequence, and regulatory analysis of the Nitrosomonas europaea dnaK gene.
    Iizumi T; Nakamura K
    Appl Environ Microbiol; 1997 May; 63(5):1777-84. PubMed ID: 9143112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the Escherichia coli heat-shock response.
    Bukau B
    Mol Microbiol; 1993 Aug; 9(4):671-80. PubMed ID: 7901731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32.
    Straus D; Walter W; Gross CA
    Genes Dev; 1990 Dec; 4(12A):2202-9. PubMed ID: 2269429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and sequencing of the dnaK and grpE genes of Legionella pneumophila.
    Amemura-Maekawa J; Watanabe H
    Gene; 1997 Sep; 197(1-2):165-8. PubMed ID: 9332363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequence analysis of the dnaK gene region of Lactococcus lactis subsp. lactis.
    Eaton T; Shearman C; Gasson M
    J Gen Microbiol; 1993 Dec; 139(12):3253-64. PubMed ID: 8126443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; LipiƄska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Escherichia coli chaperones involved in DNA replication.
    Zylicz M
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):271-7; discussion 277-8. PubMed ID: 8098531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.
    Osipiuk J; Joachimiak A
    Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK.
    Liberek K; Marszalek J; Ang D; Georgopoulos C; Zylicz M
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2874-8. PubMed ID: 1826368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene.
    Narberhaus F; Giebeler K; Bahl H
    J Bacteriol; 1992 May; 174(10):3290-9. PubMed ID: 1577695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.