These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16110199)

  • 1. Extended X-ray interbranch resonance concept for crystals with a one-dimensional deformation.
    Shevchenko M
    Acta Crystallogr A; 2005 Sep; 61(Pt 5):512-5. PubMed ID: 16110199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase modulation effects in X-ray diffraction from a highly deformed crystal with variable strain gradient.
    Shevchenko M
    Acta Crystallogr A; 2009 Sep; 65(Pt 5):352-9. PubMed ID: 19687570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent interbranch peculiarities of X-ray extinction in strongly bent crystals.
    Shevchenko M
    Acta Crystallogr A; 2007 May; 63(Pt 3):273-7. PubMed ID: 17435292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interbranch transient beating of X-ray intensities in deformed crystals.
    Shevchenko M
    Acta Crystallogr A; 2010 Jul; 66(Pt 4):499-504. PubMed ID: 20555191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the 'lamellar crystal' approach to study X-ray interbranch scattering by a bent crystal.
    Shevchenko MB
    Acta Crystallogr A; 2003 Sep; 59(Pt 5):481-6. PubMed ID: 12944612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous extinction of X-rays diffracted in strongly deformed crystals.
    Shevchenko M
    Acta Crystallogr A; 2011 Jul; 67(Pt 4):391-5. PubMed ID: 21694477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The algebraic approach to the phase problem.
    Cervellino A; Ciccariello S
    Acta Crystallogr A; 2005 Sep; 61(Pt 5):494-500. PubMed ID: 16110197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent X-ray diffractive imaging of protein crystals.
    Boutet S; Robinson IK
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):576-83. PubMed ID: 18955763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating nanoscale deformation in bone by X-ray diffraction imaging method.
    Tadano S; Giri B; Sato T; Fujisaki K; Todoh M
    J Biomech; 2008; 41(5):945-52. PubMed ID: 18291405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.
    Oyanagi H; Tsukada A; Naito M; Saini NL; Lampert MO; Gutknecht D; Dressler P; Ogawa S; Kasai K; Mohamed S; Fukano A
    J Synchrotron Radiat; 2006 Jul; 13(Pt 4):314-20. PubMed ID: 16799222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron crystallography: imaging and single-crystal diffraction from powders.
    Zou X; Hovmöller S
    Acta Crystallogr A; 2008 Jan; 64(Pt 1):149-60. PubMed ID: 18156680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization anisotropy of X-ray atomic factors and 'forbidden' resonant reflections.
    Dmitrienko VE; Ishida K; Kirfel A; Ovchinnikova EN
    Acta Crystallogr A; 2005 Sep; 61(Pt 5):481-93. PubMed ID: 16110196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of the refractive index gradient by x-ray diffraction enhanced computed tomography.
    Wang J; Zhu P; Yuan Q; Huang W; Shu H; Chen B; Hu T; Wu Z
    Phys Med Biol; 2006 Jul; 51(14):3391-6. PubMed ID: 16825737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.
    Schmidbauer M; Schäfer P; Besedin S; Grigoriev D; Köhler R; Hanke M
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):549-57. PubMed ID: 18955760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obtaining local reciprocal lattice vectors from finite-element analysis.
    Sutter JP; Connolley T; Hill TP; Huang H; Sharp DW; Drakopoulos M
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):584-92. PubMed ID: 18955764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional mapping of a deformation field inside a nanocrystal.
    Pfeifer MA; Williams GJ; Vartanyants IA; Harder R; Robinson IK
    Nature; 2006 Jul; 442(7098):63-6. PubMed ID: 16823449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering.
    Shneerson VL; Ourmazd A; Saldin DK
    Acta Crystallogr A; 2008 Mar; 64(Pt 2):303-15. PubMed ID: 18285625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarization factors in the general case of three-wave diffraction.
    Sheludko S
    Acta Crystallogr A; 2005 Sep; 61(Pt 5):528-30. PubMed ID: 16110201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of electron diffraction data from organic microcrystals: a theoretical perspective.
    Moss B
    J Electron Microsc Tech; 1989 Apr; 11(4):245-50. PubMed ID: 2723807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional model-free experimental error correction of protein crystal diffraction data with free-R test.
    Fu ZQ
    Acta Crystallogr D Biol Crystallogr; 2005 Dec; 61(Pt 12):1643-8. PubMed ID: 16301798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.