BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16110267)

  • 41. Structural proteins during brain development in the preterm and near-term ovine fetus and the effect of intermittent umbilical cord occlusion.
    Rocha E; Totten S; Hammond R; Han V; Richardson B
    Am J Obstet Gynecol; 2004 Aug; 191(2):497-506. PubMed ID: 15343227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunocytochemical characterization of olfactory ensheathing cells in fish.
    Lazzari M; Bettini S; Franceschini V
    Brain Struct Funct; 2013 Mar; 218(2):539-49. PubMed ID: 22527122
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The development of glial fibrillary acidic protein-positive cells and the appearance of laminin-like immunoreactivity in fetal olfactory bulb transplants.
    Doucette R; Kott J; Westrum L
    Brain Res; 1994 Jun; 649(1-2):334-8. PubMed ID: 7953649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of the brain in metamorphosis of the olfactory epithelium in the frog, Xenopus laevis.
    Higgs DM; Burd GD
    Brain Res Dev Brain Res; 1999 Dec; 118(1-2):185-95. PubMed ID: 10611518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae).
    Lazzari M; Franceschini V
    J Morphol; 2004 Dec; 262(3):741-9. PubMed ID: 15487019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats.
    Calvo JL; Carbonell AL; Boya J
    Brain Res; 1991 Dec; 566(1-2):333-6. PubMed ID: 1814551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Migration of bipolar subependymal cells, precursors of the granule cells of the rat olfactory bulb, with reference to the arrangement of the radial glial fibers.
    Kishi K; Peng JY; Kakuta S; Murakami K; Kuroda M; Yokota S; Hayakawa S; Kuge T; Asayama T
    Arch Histol Cytol; 1990 May; 53(2):219-26. PubMed ID: 2372444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system.
    Szaro BG; Gainer H
    Brain Res; 1988 Oct; 471(2):207-24. PubMed ID: 2460198
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti.
    Monzon-Mayor M; Yanes C; Ghandour MS; de Barry J; Gombos G
    J Comp Neurol; 1990 May; 295(4):569-79. PubMed ID: 2358522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution of growth associated protein (B-50/GAP-43) and glial fibrillary acidic protein (GFAP) immunoreactivity in rat homotopic olfactory bulb transplants.
    Cízková D; Sekerková G; Oestreicher AB; Gispen WH; Zigová T
    Arch Ital Biol; 1995 Oct; 133(4):237-50. PubMed ID: 8849315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An immunohistological study of 66 ependymomas.
    Cruz-Sanchez FF; Rossi ML; Hughes JT; Cervos-Navarro J
    Histopathology; 1988 Oct; 13(4):443-54. PubMed ID: 3220468
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subzonal organization of olfactory sensory neurons projecting to distinct glomeruli within the mouse olfactory bulb.
    Levai O; Breer H; Strotmann J
    J Comp Neurol; 2003 Apr; 458(3):209-20. PubMed ID: 12619077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Astrocytic reaction after graded spinal cord compression in rats: immunohistochemical studies on glial fibrillary acidic protein and vimentin.
    Farooque M; Badonic T; Olsson Y; Holtz A
    J Neurotrauma; 1995 Feb; 12(1):41-52. PubMed ID: 7540218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glial expression of estrogen and androgen receptors after rat brain injury.
    García-Ovejero D; Veiga S; García-Segura LM; Doncarlos LL
    J Comp Neurol; 2002 Aug; 450(3):256-71. PubMed ID: 12209854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry.
    Lazzari M; Franceschini V
    Anat Embryol (Berl); 2006 Oct; 211(5):497-506. PubMed ID: 16763812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Different response of astrocytes and Bergmann glial cells to portacaval shunt: an immunohistochemical study in the rat cerebellum.
    Suárez I; Bodega G; Arilla E; Rubio M; Villalba R; Fernández B
    Glia; 1992; 6(3):172-9. PubMed ID: 1282500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neurogenesis in the olfactory bulb of the frog Xenopus laevis shows unique patterns during embryonic development and metamorphosis.
    Fritz A; Gorlick DL; Burd GD
    Int J Dev Neurosci; 1996 Nov; 14(7-8):931-43. PubMed ID: 9010736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temporal and spatial patterns of glial differentiation in the surgically induced spinal open neural tube defect of chick embryos: astrocytic, radial glial and microglial differentiations.
    Sim KB; Chung YN; Cho SS; Cho BK; Kim M; Kim DW; Huh YD; Wang KC
    Childs Nerv Syst; 2002 Dec; 18(12):694-701. PubMed ID: 12483353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain.
    Schiffer D; Giordana MT; Migheli A; Giaccone G; Pezzotta S; Mauro A
    Brain Res; 1986 May; 374(1):110-8. PubMed ID: 2424556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of radial glia and astrocytes in the spinal cord of the North American opossum (Didelphis virginiana): an immunohistochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):1-9. PubMed ID: 8244526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.