BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16110677)

  • 1. [Phytoremediation of mercury and cadmium polluted wetland by Arundo donax].
    Han Z; Hu X; Hu Z
    Ying Yong Sheng Tai Xue Bao; 2005 May; 16(5):945-50. PubMed ID: 16110677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Tolerance of Arundo donax to heavy metals].
    Han Z; Hu Z
    Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):161-5. PubMed ID: 15852979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cadmium on mercury accumulation and transformation by Arundo donax L.
    Li X; Zhao L; Teng Y; Luo Y; Zhao Q
    Environ Sci Pollut Res Int; 2023 May; 30(22):62461-62469. PubMed ID: 36943572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes.
    Cano-Ruiz J; Ruiz Galea M; Amorós MC; Alonso J; Mauri PV; Lobo MC
    Chemosphere; 2020 Aug; 252():126576. PubMed ID: 32443267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals.
    Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M
    Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.
    Yu S; Sheng L; Zhang C; Deng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():88-91. PubMed ID: 29524747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of soil properties on heavy metal accumulation in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) in Pearl River Delta, China.
    Liu Y; Kong GT; Jia QY; Wang F; Xu RS; Li FB; Wang Y; Zhou HR
    J Environ Sci Health B; 2007 Feb; 42(2):219-27. PubMed ID: 17365337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.
    Luo J; Qi S; Peng L; Wang J
    Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium phytoremediation by Arundo donax L. from contaminated soil and water.
    Sabeen M; Mahmood Q; Irshad M; Fareed I; Khan A; Ullah F; Hussain J; Hayat Y; Tabassum S
    Biomed Res Int; 2013; 2013():324830. PubMed ID: 24459667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Competence of Cd Phytoremediation in Cd-OCDF Co-contaminated Soil Using Mirabilis jalapa L].
    Zhang XL; Zou W; Zhou QX
    Huan Jing Ke Xue; 2015 Aug; 36(8):3045-55. PubMed ID: 26592039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L.
    Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S
    Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals in wetland plants and soil of Lake Taihu, China.
    Yang H; Shen Z; Zhu S; Wang W
    Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni.
    Papazoglou EG; Karantounias GA; Vemmos SN; Bouranis DL
    Environ Int; 2005 Feb; 31(2):243-9. PubMed ID: 15661290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Intercropping
    Zeng P; Guo ZH; Xiao XY; Peng C; Huang B
    Huan Jing Ke Xue; 2018 Nov; 39(11):5207-5216. PubMed ID: 30628246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants.
    Vymazal J
    Sci Total Environ; 2016 Feb; 544():495-8. PubMed ID: 26673940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenate tolerance and selenium hyperaccumulation in the monocot giant reed (Arundo donax), a biomass crop plant with phytoremediation potential.
    Domokos-Szabolcsy É; Fári M; Márton L; Czakó M; Veres S; Elhawat N; Antal G; El-Ramady H; Zsíros O; Garab G; Alshaal T
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31368-31380. PubMed ID: 30196460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and nutrients accumulation potentials of giant reed (Arundo donax L.) in different habitats in Egypt.
    Galal TM; Shehata HS
    Int J Phytoremediation; 2016 Dec; 18(12):1221-30. PubMed ID: 27257886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L.
    Santoro DF; Sicilia A; Testa G; Cosentino SL; Lo Piero AR
    BMC Genomics; 2022 Jun; 23(1):427. PubMed ID: 35672691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.