These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16110782)

  • 1. Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence.
    Calcagno AM; Bignell E; Rogers TR; Jones MD; Mühlschlegel FA; Haynes K
    Med Mycol; 2005 Jun; 43(4):355-64. PubMed ID: 16110782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida glabrata Ste20 is involved in maintaining cell wall integrity and adaptation to hypertonic stress, and is required for wild-type levels of virulence.
    Calcagno AM; Bignell E; Rogers TR; Canedo M; Mühlschlegel FA; Haynes K
    Yeast; 2004 May; 21(7):557-68. PubMed ID: 15164359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors.
    Roetzer A; Gregori C; Jennings AM; Quintin J; Ferrandon D; Butler G; Kuchler K; Ammerer G; Schüller C
    Mol Microbiol; 2008 Aug; 69(3):603-20. PubMed ID: 18547390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MAPk ASTE11 is involved in the maintenance of cell wall integrity and in filamentation in Arxula adeninivorans, but not in adaptation to hypertonic stress.
    Böer E; El Metabteb G; El Fiki A; Brückner P; Wartmann T; Piontek M; Kunze G
    FEMS Yeast Res; 2009 May; 9(3):468-77. PubMed ID: 19260971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential virulence of Candida glabrata glycosylation mutants.
    West L; Lowman DW; Mora-Montes HM; Grubb S; Murdoch C; Thornhill MH; Gow NA; Williams D; Haynes K
    J Biol Chem; 2013 Jul; 288(30):22006-18. PubMed ID: 23720756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH homeostasis in Candida glabrata in infection-associated conditions.
    Ullah A; Lopes MI; Brul S; Smits GJ
    Microbiology (Reading); 2013 Apr; 159(Pt 4):803-813. PubMed ID: 23378571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen.
    Roetzer A; Gabaldón T; Schüller C
    FEMS Microbiol Lett; 2011 Jan; 314(1):1-9. PubMed ID: 20846362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p.
    Cuéllar-Cruz M; Briones-Martin-del-Campo M; Cañas-Villamar I; Montalvo-Arredondo J; Riego-Ruiz L; Castaño I; De Las Peñas A
    Eukaryot Cell; 2008 May; 7(5):814-25. PubMed ID: 18375620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence.
    Kamran M; Calcagno AM; Findon H; Bignell E; Jones MD; Warn P; Hopkins P; Denning DW; Butler G; Rogers T; Mühlschlegel FA; Haynes K
    Eukaryot Cell; 2004 Apr; 3(2):546-52. PubMed ID: 15075283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.
    Gregori C; Schüller C; Roetzer A; Schwarzmüller T; Ammerer G; Kuchler K
    Eukaryot Cell; 2007 Sep; 6(9):1635-45. PubMed ID: 17616630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata.
    Miyazaki T; Inamine T; Yamauchi S; Nagayoshi Y; Saijo T; Izumikawa K; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Kohno S
    FEMS Yeast Res; 2010 May; 10(3):343-52. PubMed ID: 20214686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skn7p is involved in oxidative stress response and virulence of Candida glabrata.
    Saijo T; Miyazaki T; Izumikawa K; Mihara T; Takazono T; Kosai K; Imamura Y; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Kohno S
    Mycopathologia; 2010 Feb; 169(2):81-90. PubMed ID: 19693686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CgSTE11 mediates cross tolerance to multiple environmental stressors in Candida glabrata.
    Huang M; Khan J; Kaur M; Vanega JDT; Patiño OAA; Ramasubramanian AK; Kao KC
    Sci Rep; 2019 Nov; 9(1):17036. PubMed ID: 31745168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deubiquitination module is critical for oxidative stress response and biofilm formation in Candida glabrata.
    Huang YH; Lee YH; Lin CJ; Hsu LH; Chen YL
    Med Mycol; 2023 Oct; 61(10):. PubMed ID: 37844959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Elm1 in antifungal susceptibility and virulence in Candida glabrata.
    Ito Y; Miyazaki T; Tanaka Y; Suematsu T; Nakayama H; Morita A; Hirayama T; Tashiro M; Takazono T; Saijo T; Shimamura S; Yamamoto K; Imamura Y; Izumikawa K; Yanagihara K; Kohno S; Mukae H
    Sci Rep; 2020 Jun; 10(1):9789. PubMed ID: 32555245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different consequences of ACE2 and SWI5 gene disruptions for virulence of pathogenic and nonpathogenic yeasts.
    MacCallum DM; Findon H; Kenny CC; Butler G; Haynes K; Odds FC
    Infect Immun; 2006 Sep; 74(9):5244-8. PubMed ID: 16926418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae Ste50 binds the MAPKKK Ste11 through a head-to-tail SAM domain interaction.
    Kwan JJ; Warner N; Maini J; Chan Tung KW; Zakaria H; Pawson T; Donaldson LW
    J Mol Biol; 2006 Feb; 356(1):142-54. PubMed ID: 16337230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.