These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16110968)

  • 61. Microbial diversity in natural environments: focusing on fundamental questions.
    Ward DM
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):309-24. PubMed ID: 17063383
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat.
    Liu Z; Klatt CG; Wood JM; Rusch DB; Ludwig M; Wittekindt N; Tomsho LP; Schuster SC; Ward DM; Bryant DA
    ISME J; 2011 Aug; 5(8):1279-90. PubMed ID: 21697962
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature adaptations in the terminal processes of anaerobic decomposition of yellowstone national park and icelandic hot spring microbial mats.
    Sandbeck KA; Ward DM
    Appl Environ Microbiol; 1982 Oct; 44(4):844-51. PubMed ID: 16346109
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Role of the terrestrial subsurface in shaping geothermal spring microbial communities.
    Tin S; Bizzoco RW; Kelley ST
    Environ Microbiol Rep; 2011 Aug; 3(4):491-9. PubMed ID: 23761312
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Diverse Thermus species inhabit a single hot spring microbial mat.
    Nold SC; Ward DM
    Syst Appl Microbiol; 1995; 18():274-8. PubMed ID: 11539573
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cultivation and genomic, nutritional, and lipid biomarker characterization of Roseiflexus strains closely related to predominant in situ populations inhabiting Yellowstone hot spring microbial mats.
    van der Meer MT; Klatt CG; Wood J; Bryant DA; Bateson MM; Lammerts L; Schouten S; Damsté JS; Madigan MT; Ward DM
    J Bacteriol; 2010 Jun; 192(12):3033-42. PubMed ID: 20363941
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Division-specific differences in bacterial community assembly of two alkaline hot spring ecosystems from Yellowstone National Park.
    Weltzer ML; Miller SR
    Microb Ecol; 2013 Apr; 65(3):537-40. PubMed ID: 23529651
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary).
    Enyedi NT; Anda D; Borsodi AK; Szabó A; Pál SE; Óvári M; Márialigeti K; Kovács-Bodor P; Mádl-Szőnyi J; Makk J
    J Environ Radioact; 2019 Jul; 203():8-17. PubMed ID: 30844681
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bacterial diversity in water from Xifeng Hot Spring in China.
    Wu L; Long H; Huang S; Niu X; Li S; Yu X; You L; Ran X; Wang J
    Braz J Microbiol; 2023 Sep; 54(3):1943-1954. PubMed ID: 37594656
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cellulose as extracellular polysaccharide of hot spring sulfur-turf bacterial mat.
    Ogawa K; Maki Y
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2652-4. PubMed ID: 14730147
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A micrometer-scale snapshot on phototroph spatial distributions: mass spectrometry imaging of microbial mats in Octopus Spring, Yellowstone National Park.
    Wörmer L; Gajendra N; Schubotz F; Matys ED; Evans TW; Summons RE; Hinrichs KU
    Geobiology; 2020 Nov; 18(6):742-759. PubMed ID: 32936514
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Microbially mediated sulphide production in a thermal, acidic algal mat community in Yellowstone National Park.
    Ferris MJ; Magnuson TS; Fagg JA; Thar R; Kühl M; Sheehan KB; Henson JM
    Environ Microbiol; 2003 Oct; 5(10):954-60. PubMed ID: 14510849
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs.
    Campbell KM; Kouris A; England W; Anderson RE; McCleskey RB; Nordstrom DK; Whitaker RJ
    Environ Microbiol; 2017 Jun; 19(6):2334-2347. PubMed ID: 28276174
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RECOVERY OF A HOT SPRING COMMUNITY FROM A CATASTROPHE.
    Brock TD; Brock ML
    J Phycol; 1969 Mar; 5(1):75-7. PubMed ID: 27097256
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.
    Boomer SM; Pierson BK; Austinhirst R; Castenholz RW
    Arch Microbiol; 2000 Sep; 174(3):152-61. PubMed ID: 11041345
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification and distribution of high-abundance proteins in the octopus spring microbial mat community.
    Schaffert CS; Klatt CG; Ward DM; Pauley M; Steinke L
    Appl Environ Microbiol; 2012 Dec; 78(23):8481-4. PubMed ID: 23001677
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial community biofabrics in a geothermal mine adit.
    Spear JR; Barton HA; Robertson CE; Francis CA; Pace NR
    Appl Environ Microbiol; 2007 Oct; 73(19):6172-80. PubMed ID: 17693567
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog.
    Sapers HM; Ronholm J; Raymond-Bouchard I; Comrey R; Osinski GR; Whyte LG
    Front Microbiol; 2017; 8():2527. PubMed ID: 29312221
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Bacterial stromatolites: origin of laminations.
    Doemel WN; Brock TD
    Science; 1974 Jun; 184(4141):1083-5. PubMed ID: 17736194
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Autecology of an arsenite chemolithotroph: sulfide constraints on function and distribution in a geothermal spring.
    D'Imperio S; Lehr CR; Breary M; McDermott TR
    Appl Environ Microbiol; 2007 Nov; 73(21):7067-74. PubMed ID: 17827309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.