These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 16111454)
1. The role of data mining in pharmacovigilance. Hauben M; Madigan D; Gerrits CM; Walsh L; Van Puijenbroek EP Expert Opin Drug Saf; 2005 Sep; 4(5):929-48. PubMed ID: 16111454 [TBL] [Abstract][Full Text] [Related]
2. Potential utility of data-mining algorithms for early detection of potentially fatal/disabling adverse drug reactions: a retrospective evaluation. Hauben M; Reich L J Clin Pharmacol; 2005 Apr; 45(4):378-84. PubMed ID: 15778418 [TBL] [Abstract][Full Text] [Related]
3. Applying quantitative methods for detecting new drug safety signals in pharmacovigilance national database. Shalviri G; Mohammad K; Majdzadeh R; Gholami K Pharmacoepidemiol Drug Saf; 2007 Oct; 16(10):1136-40. PubMed ID: 17705214 [TBL] [Abstract][Full Text] [Related]
4. Multinomial modeling and an evaluation of common data-mining algorithms for identifying signals of disproportionate reporting in pharmacovigilance databases. Johnson K; Guo C; Gosink M; Wang V; Hauben M Bioinformatics; 2012 Dec; 28(23):3123-30. PubMed ID: 23064001 [TBL] [Abstract][Full Text] [Related]
5. A knowledge based approach for automated signal generation in pharmacovigilance. Henegar C; Bousquet C; Lillo-Le Louët A; Degoulet P; Jaulent MC Stud Health Technol Inform; 2004; 107(Pt 1):626-30. PubMed ID: 15360888 [TBL] [Abstract][Full Text] [Related]
6. Signal detection in the pharmaceutical industry: integrating clinical and computational approaches. Hauben M Drug Saf; 2007; 30(7):627-30. PubMed ID: 17604418 [TBL] [Abstract][Full Text] [Related]
7. Mining for adverse drug events with formal concept analysis. Estacio-Moreno A; Toussaint Y; Bousquet C Stud Health Technol Inform; 2008; 136():803-8. PubMed ID: 18487830 [TBL] [Abstract][Full Text] [Related]
8. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Trifirò G; Pariente A; Coloma PM; Kors JA; Polimeni G; Miremont-Salamé G; Catania MA; Salvo F; David A; Moore N; Caputi AP; Sturkenboom M; Molokhia M; Hippisley-Cox J; Acedo CD; van der Lei J; Fourrier-Reglat A; Pharmacoepidemiol Drug Saf; 2009 Dec; 18(12):1176-84. PubMed ID: 19757412 [TBL] [Abstract][Full Text] [Related]
9. Postmarketing hepatic adverse event experience with PEGylated/non-PEGylated drugs: a disproportionality analysis. Hauben M; Vegni F; Reich L; Younus M Eur J Gastroenterol Hepatol; 2007 Nov; 19(11):934-41. PubMed ID: 18049161 [TBL] [Abstract][Full Text] [Related]
10. Data-mining analyses of pharmacovigilance signals in relation to relevant comparison drugs. Bate A; Lindquist M; Orre R; Edwards IR; Meyboom RH Eur J Clin Pharmacol; 2002 Oct; 58(7):483-90. PubMed ID: 12389072 [TBL] [Abstract][Full Text] [Related]
11. Systematic investigation of time windows for adverse event data mining for recently approved drugs. Hochberg AM; Hauben M; Pearson RK; O'Hara DJ; Reisinger SJ J Clin Pharmacol; 2009 Jun; 49(6):626-33. PubMed ID: 19451402 [TBL] [Abstract][Full Text] [Related]
12. Quantitative signal detection using spontaneous ADR reporting. Bate A; Evans SJ Pharmacoepidemiol Drug Saf; 2009 Jun; 18(6):427-36. PubMed ID: 19358225 [TBL] [Abstract][Full Text] [Related]
13. Decision support methods for the detection of adverse events in post-marketing data. Hauben M; Bate A Drug Discov Today; 2009 Apr; 14(7-8):343-57. PubMed ID: 19187799 [TBL] [Abstract][Full Text] [Related]
14. The nature of the scientific evidence leading to drug withdrawals for pharmacovigilance reasons in France. Olivier P; Montastruc JL Pharmacoepidemiol Drug Saf; 2006 Nov; 15(11):808-12. PubMed ID: 16700082 [TBL] [Abstract][Full Text] [Related]
15. Signal detection in pharmacovigilance: empirical evaluation of data mining tools. Chan KA; Hauben M Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):597-9. PubMed ID: 16134080 [No Abstract] [Full Text] [Related]
16. Comparing data mining methods on the VAERS database. Banks D; Woo EJ; Burwen DR; Perucci P; Braun MM; Ball R Pharmacoepidemiol Drug Saf; 2005 Sep; 14(9):601-9. PubMed ID: 15954077 [TBL] [Abstract][Full Text] [Related]
17. Signal detection of methylphenidate by comparing a spontaneous reporting database with a claims database. Kim J; Kim M; Ha JH; Jang J; Hwang M; Lee BK; Chung MW; Yoo TM; Kim MJ Regul Toxicol Pharmacol; 2011 Nov; 61(2):154-60. PubMed ID: 21510997 [TBL] [Abstract][Full Text] [Related]
18. Influence of the MedDRA hierarchy on pharmacovigilance data mining results. Pearson RK; Hauben M; Goldsmith DI; Gould AL; Madigan D; O'Hara DJ; Reisinger SJ; Hochberg AM Int J Med Inform; 2009 Dec; 78(12):e97-e103. PubMed ID: 19230751 [TBL] [Abstract][Full Text] [Related]
19. Early detection of adverse drug events within population-based health networks: application of sequential testing methods. Brown JS; Kulldorff M; Chan KA; Davis RL; Graham D; Pettus PT; Andrade SE; Raebel MA; Herrinton L; Roblin D; Boudreau D; Smith D; Gurwitz JH; Gunter MJ; Platt R Pharmacoepidemiol Drug Saf; 2007 Dec; 16(12):1275-84. PubMed ID: 17955500 [TBL] [Abstract][Full Text] [Related]
20. Reports of hyperkalemia after publication of RALES--a pharmacovigilance study. Hauben M; Reich L; Gerrits CM Pharmacoepidemiol Drug Saf; 2006 Nov; 15(11):775-83. PubMed ID: 16804951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]