These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 16111646)

  • 1. Effect of N-terminal deletions on the foldability, stability, and activity of staphylococcal nuclease.
    Zhang H; Huang S; Feng Y; Guo P; Jing G
    Arch Biochem Biophys; 2005 Sep; 441(2):123-31. PubMed ID: 16111646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the subtle conformational state of N138ND2-Q106O hydrogen bonding deletion mutant (Asn138Asp) of staphylococcal nuclease using time of flight mass spectrometry with limited proteolysis.
    Huang S; Zou X; Guo P; Zhong L; Peng J; Jing G
    Arch Biochem Biophys; 2005 Feb; 434(1):86-92. PubMed ID: 15629112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease.
    Sallum CO; Martel DM; Fournier RS; Matousek WM; Alexandrescu AT
    Biochemistry; 2005 May; 44(17):6392-403. PubMed ID: 15850373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of the C-terminal loop L137-S141 for the folding and folding stability of staphylococcal nuclease.
    Wang M; Feng Y; Yao H; Wang J
    Biochemistry; 2010 May; 49(20):4318-26. PubMed ID: 20415411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational features of a truncated staphylococcal nuclease R (SNR135) and their implications for catalysis.
    Zhou B; Jing GZ
    Arch Biochem Biophys; 1998 Dec; 360(1):33-40. PubMed ID: 9826426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of information encoded in tryptophan 140 of staphylococcal nuclease.
    Hirano S; Kamikubo H; Yamazaki Y; Kataoka M
    Proteins; 2005 Feb; 58(2):271-7. PubMed ID: 15573380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic folding and unfolding of staphylococcal nuclease and its six mutants studied by stopped-flow circular dichroism.
    Kalnin NN; Kuwajima K
    Proteins; 1995 Oct; 23(2):163-76. PubMed ID: 8592698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first-order phase transition?
    Griko YV; Gittis A; Lattman EE; Privalov PL
    J Mol Biol; 1994 Oct; 243(1):93-9. PubMed ID: 7932744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding stability and cooperativity of the three forms of 1-110 residues fragment of staphylococcal nuclease.
    Xie T; Liu D; Feng Y; Shan L; Wang J
    Biophys J; 2007 Mar; 92(6):2090-107. PubMed ID: 17172296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The native-like interactions between SNase121 and SNase(111-143) fragments induce the recovery of their native-like structures and the ability to degrade DNA.
    Geng Y; Feng Y; Xie T; Shan L; Wang J
    Biochemistry; 2009 Sep; 48(36):8692-703. PubMed ID: 19658434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the folding capacity and residual structures in 1-79 residues fragment of staphylococcal nuclease by biophysical and NMR methods.
    Wang X; Wang M; Tong Y; Shan L; Wang J
    Biochimie; 2006 Oct; 88(10):1343-55. PubMed ID: 17045725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian alkaline phosphatase catalysis requires active site structure stabilization via the N-terminal amino acid microenvironment.
    Hoylaerts MF; Ding L; Narisawa S; Van Kerckhoven S; Millan JL
    Biochemistry; 2006 Aug; 45(32):9756-66. PubMed ID: 16893177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accommodation of single amino acid insertions by the native state of staphylococcal nuclease.
    Sondek J; Shortle D
    Proteins; 1990; 7(4):299-305. PubMed ID: 2381904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the N- and C-terminal fragments of bovine pancreatic deoxyribonuclease in active protein folding.
    Chen WJ; Huang PT; Liu J; Liao TH
    Biochemistry; 2004 Aug; 43(33):10653-63. PubMed ID: 15311926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of tryptophan in staphylococcal nuclease stability.
    Hu HY; Wu MC; Fang HJ; Forrest MD; Hu CK; Tsong TY; Chen HM
    Biophys Chem; 2010 Oct; 151(3):170-7. PubMed ID: 20688426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease.
    Schwehm JM; Kristyanne ES; Biggers CC; Stites WE
    Biochemistry; 1998 May; 37(19):6939-48. PubMed ID: 9578580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.