BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16111732)

  • 1. West Nile virus replication interferes with both poly(I:C)-induced interferon gene transcription and response to interferon treatment.
    Scholle F; Mason PW
    Virology; 2005 Nov; 342(1):77-87. PubMed ID: 16111732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice.
    Liu WJ; Wang XJ; Clark DC; Lobigs M; Hall RA; Khromykh AA
    J Virol; 2006 Mar; 80(5):2396-404. PubMed ID: 16474146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. West Nile virus infection induces interferon signalling in human retinal pigment epithelial cells.
    Cinatl J; Michaelis M; Fleckenstein C; Bauer G; Kabicková H; Scholz M; Rabenau HF; Doerr HW
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):645-51. PubMed ID: 16431963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription.
    Liu WJ; Chen HB; Wang XJ; Huang H; Khromykh AA
    J Virol; 2004 Nov; 78(22):12225-35. PubMed ID: 15507609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal regulatory protein alpha negatively regulates both TLR3 and cytoplasmic pathways in type I interferon induction.
    Dong LW; Kong XN; Yan HX; Yu LX; Chen L; Yang W; Liu Q; Huang DD; Wu MC; Wang HY
    Mol Immunol; 2008 Jun; 45(11):3025-35. PubMed ID: 18471880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action.
    Rossi SL; Zhao Q; O'Donnell VK; Mason PW
    Virology; 2005 Jan; 331(2):457-70. PubMed ID: 15629788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.
    Zhang HL; Ye HQ; Liu SQ; Deng CL; Li XD; Shi PY; Zhang B
    J Virol; 2017 Sep; 91(18):. PubMed ID: 28659477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early induction of interferon-independent virus-specific ICAM-1 (CD54) expression by flavivirus in quiescent but not proliferating fibroblasts--implications for virus-host interactions.
    Shen J; Devery JM; King NJ
    Virology; 1995 Apr; 208(2):437-49. PubMed ID: 7747416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cigarette smoke attenuation of poly I:C-induced innate antiviral responses in human PBMC is mainly due to inhibition of IFN-beta production.
    Mian MF; Stämpfli MR; Mossman KL; Ashkar AA
    Mol Immunol; 2009 Feb; 46(5):821-9. PubMed ID: 18930547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo.
    Rossi SL; Fayzulin R; Dewsbury N; Bourne N; Mason PW
    Virology; 2007 Jul; 364(1):184-95. PubMed ID: 17382364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins.
    Liu WJ; Wang XJ; Mokhonov VV; Shi PY; Randall R; Khromykh AA
    J Virol; 2005 Feb; 79(3):1934-42. PubMed ID: 15650219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and characterization of subgenomic replicons of New York strain of West Nile virus.
    Shi PY; Tilgner M; Lo MK
    Virology; 2002 May; 296(2):219-33. PubMed ID: 12069521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production.
    Komatsu T; Takeuchi K; Yokoo J; Gotoh B
    Virology; 2004 Jul; 325(1):137-48. PubMed ID: 15231393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses.
    Suthar MS; Gale M; Owen DM
    Cell Microbiol; 2009 Jun; 11(6):880-8. PubMed ID: 19341437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic systems of West Nile virus and their potential applications.
    Shi PY
    Curr Opin Investig Drugs; 2003 Aug; 4(8):959-65. PubMed ID: 14508880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway.
    Fredericksen BL; Smith M; Katze MG; Shi PY; Gale M
    J Virol; 2004 Jul; 78(14):7737-47. PubMed ID: 15220448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection.
    van Tol S; Atkins C; Bharaj P; Johnson KN; Hage A; Freiberg AN; Rajsbaum R
    J Virol; 2020 Jan; 94(2):. PubMed ID: 31694946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human cytomegalovirus antagonist of type I IFN-dependent signal transducer and activator of transcription signaling.
    Paulus C; Krauss S; Nevels M
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3840-5. PubMed ID: 16497831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms.
    Daffis S; Samuel MA; Keller BC; Gale M; Diamond MS
    PLoS Pathog; 2007 Jul; 3(7):e106. PubMed ID: 17676997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.
    La Rocca SA; Herbert RJ; Crooke H; Drew TW; Wileman TE; Powell PP
    J Virol; 2005 Jun; 79(11):7239-47. PubMed ID: 15890962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.