These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 16111793)
1. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Sánchez-Bayo F Environ Pollut; 2006 Feb; 139(3):385-420. PubMed ID: 16111793 [TBL] [Abstract][Full Text] [Related]
2. Relative sensitivity of hyporheic copepods to chemicals. Di Marzio WD; Castaldo D; Pantani C; Di Cioccio A; Di Lorenzo T; Sáenz ME; Galassi DM Bull Environ Contam Toxicol; 2009 Apr; 82(4):488-91. PubMed ID: 19005609 [TBL] [Abstract][Full Text] [Related]
3. Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Ashauer R; Hintermeister A; Potthoff E; Escher BI Aquat Toxicol; 2011 May; 103(1-2):38-45. PubMed ID: 21392493 [TBL] [Abstract][Full Text] [Related]
4. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Sánchez-Bayo F; Goka K Aquat Toxicol; 2006 Jun; 78(3):262-71. PubMed ID: 16690142 [TBL] [Abstract][Full Text] [Related]
5. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Martins J; Oliva Teles L; Vasconcelos V Environ Int; 2007 Apr; 33(3):414-25. PubMed ID: 17300839 [TBL] [Abstract][Full Text] [Related]
6. Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz). McDonald SF; Hamilton SJ; Buhl KJ; Heisinger JF Ecotoxicol Environ Saf; 1996 Feb; 33(1):62-72. PubMed ID: 8744925 [TBL] [Abstract][Full Text] [Related]
7. Acute toxicity of six freshwater mussel species (Glochidia) to six chemicals: implications for Daphnids and Utterbackia imbecillis as surrogates for protection of freshwater mussels (Unionidae). Milam CD; Farris JL; Dwyer FJ; Hardesty DK Arch Environ Contam Toxicol; 2005 Feb; 48(2):166-73. PubMed ID: 15772883 [TBL] [Abstract][Full Text] [Related]
8. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: implications of establishing effluent discharge limits in Korea. Kang SW; Seo J; Han J; Lee JS; Jung J Mar Pollut Bull; 2011; 63(5-12):370-5. PubMed ID: 21172718 [TBL] [Abstract][Full Text] [Related]
10. A comparison of the copper sensitivity of two economically important saltwater mussel species and a review of previously reported copper toxicity data for mussels: important implications for determining future ambient copper saltwater criteria in the USA. Arnold WR; Cotsifas JS; Smith DS; Le Page S; Gruenthal KM Environ Toxicol; 2009 Dec; 24(6):618-28. PubMed ID: 19065681 [TBL] [Abstract][Full Text] [Related]
11. Influence of the energy relationships of organic compounds on toxicity to the cladoceran Daphnia magna and the fish Pimephales promelas. Genoni GP Ecotoxicol Environ Saf; 1997 Feb; 36(1):27-37. PubMed ID: 9056397 [TBL] [Abstract][Full Text] [Related]
12. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea. Kim E; Jun YR; Jo HJ; Shim SB; Jung J Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429 [TBL] [Abstract][Full Text] [Related]
13. A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for Environmental Risk Assessment of toxic effluents. Barata C; Alañon P; Gutierrez-Alonso S; Riva MC; Fernández C; Tarazona JV Sci Total Environ; 2008 Nov; 405(1-3):78-86. PubMed ID: 18657849 [TBL] [Abstract][Full Text] [Related]
14. Monitoring the response of microcontaminants by dynamic Daphnia magna and Leuciscus idus assays in the Rhine Delta: biological early warning as a useful supplement. Hendriks AJ; Stouten MD Ecotoxicol Environ Saf; 1993 Dec; 26(3):265-79. PubMed ID: 7507817 [TBL] [Abstract][Full Text] [Related]
15. Acute toxicity tests with the tropical cladoceran Pseudosida ramosa: The importance of using native species as test organisms. Freitas EC; Rocha O Arch Environ Contam Toxicol; 2011 Feb; 60(2):241-9. PubMed ID: 20464548 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms. Sánchez-Fortún S; Barahona MV Chemosphere; 2005 Apr; 59(4):553-9. PubMed ID: 15788178 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments. Martínez-Jerónimo F; Cruz-Cisneros JL; García-Hernández L Ecotoxicol Environ Saf; 2008 Sep; 71(1):26-31. PubMed ID: 18573528 [TBL] [Abstract][Full Text] [Related]
18. Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution. Rodrigues AC; Jesus FT; Fernandes MA; Morgado F; Soares AM; Abreu SN Bull Environ Contam Toxicol; 2013 Aug; 91(2):191-6. PubMed ID: 23771310 [TBL] [Abstract][Full Text] [Related]
19. The use of a test battery in marine ecotoxicology: the acute toxicity of sodium dodecyl sulfate. Mariani L; De Pascale D; Faraponova O; Tornambè A; Sarni A; Giuliani S; Ruggiero G; Onorati F; Magaletti E Environ Toxicol; 2006 Aug; 21(4):373-9. PubMed ID: 16841322 [TBL] [Abstract][Full Text] [Related]
20. Acute toxicity value extrapolation with fish and aquatic invertebrates. Buckler DR; Mayer FL; Ellersieck MR; Asfaw A Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]