These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 16111914)
1. Improving on nature: antibiotics that target the ribosome. Sutcliffe JA Curr Opin Microbiol; 2005 Oct; 8(5):534-42. PubMed ID: 16111914 [TBL] [Abstract][Full Text] [Related]
2. Macrolide antibiotic interaction and resistance on the bacterial ribosome. Poehlsgaard J; Douthwaite S Curr Opin Investig Drugs; 2003 Feb; 4(2):140-8. PubMed ID: 12669373 [TBL] [Abstract][Full Text] [Related]
3. The complex of a designer antibiotic with a model aminoacyl site of the 30S ribosomal subunit revealed by X-ray crystallography. Russell RJ; Murray JB; Lentzen G; Haddad J; Mobashery S J Am Chem Soc; 2003 Mar; 125(12):3410-1. PubMed ID: 12643685 [TBL] [Abstract][Full Text] [Related]
4. The molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures. Pfister P; Hobbie S; Vicens Q; Böttger EC; Westhof E Chembiochem; 2003 Oct; 4(10):1078-88. PubMed ID: 14523926 [TBL] [Abstract][Full Text] [Related]
7. Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Vicens Q; Westhof E Biopolymers; 2003 Sep; 70(1):42-57. PubMed ID: 12925992 [TBL] [Abstract][Full Text] [Related]
8. The use of ribosomal crystal structures in antibiotic drug design. Wimberly BT Curr Opin Investig Drugs; 2009 Aug; 10(8):750-65. PubMed ID: 19649920 [TBL] [Abstract][Full Text] [Related]
9. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. Steitz TA FEBS Lett; 2005 Feb; 579(4):955-8. PubMed ID: 15680981 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F; Zarivach R; Harms J; Bashan A; Tocilj A; Albrecht R; Yonath A; Franceschi F Nature; 2001 Oct; 413(6858):814-21. PubMed ID: 11677599 [TBL] [Abstract][Full Text] [Related]
11. Molecular contacts between antibiotics and the 30S ribosomal particle. Wirmer J; Westhof E Methods Enzymol; 2006; 415():180-202. PubMed ID: 17116475 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis and ribosome binding of chloramphenicol nucleotide and intercalator conjugates. Johansson D; Jessen CH; Pøhlsgaard J; Jensen KB; Vester B; Pedersen EB; Nielsen P Bioorg Med Chem Lett; 2005 Apr; 15(8):2079-83. PubMed ID: 15808472 [TBL] [Abstract][Full Text] [Related]
13. Antibiotics that target protein synthesis. McCoy LS; Xie Y; Tor Y Wiley Interdiscip Rev RNA; 2011; 2(2):209-32. PubMed ID: 21957007 [TBL] [Abstract][Full Text] [Related]
14. Structure-based drug design meets the ribosome. Franceschi F; Duffy EM Biochem Pharmacol; 2006 Mar; 71(7):1016-25. PubMed ID: 16443192 [TBL] [Abstract][Full Text] [Related]
15. On the mechanism of action of 9-O-arylalkyloxime derivatives of 6-O-mycaminosyltylonolide, a new class of 16-membered macrolide antibiotics. Karahalios P; Kalpaxis DL; Fu H; Katz L; Wilson DN; Dinos GP Mol Pharmacol; 2006 Oct; 70(4):1271-80. PubMed ID: 16873579 [TBL] [Abstract][Full Text] [Related]
16. Drugs targeting the ribosome. Hermann T Curr Opin Struct Biol; 2005 Jun; 15(3):355-66. PubMed ID: 15919197 [TBL] [Abstract][Full Text] [Related]
17. Two nucleotide substitutions in the A-site of yeast 18S rRNA affect translation and differentiate the interaction of ribosomes with aminoglycoside antibiotics. Tselika S; Konstantinidis TC; Synetos D Biochimie; 2008 Jun; 90(6):908-17. PubMed ID: 18331849 [TBL] [Abstract][Full Text] [Related]
18. Molecular recognition between the ribosomal decoding site and natural or non-natural aminoglycosides. Westhof E Nucleic Acids Symp Ser (Oxf); 2005; (49):59-60. PubMed ID: 17150632 [TBL] [Abstract][Full Text] [Related]