BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16111944)

  • 1. Evolution in action: following function in duplicated floral homeotic genes.
    Causier B; Castillo R; Zhou J; Ingram R; Xue Y; Schwarz-Sommer Z; Davies B
    Curr Biol; 2005 Aug; 15(16):1508-12. PubMed ID: 16111944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis.
    Benedito VA; Visser PB; van Tuyl JM; Angenent GC; de Vries SC; Krens FA
    J Exp Bot; 2004 Jun; 55(401):1391-9. PubMed ID: 15155783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana.
    Moore RC; Grant SR; Purugganan MD
    Mol Biol Evol; 2005 Jan; 22(1):91-103. PubMed ID: 15371526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.
    Pnueli L; Abu-Abeid M; Zamir D; Nacken W; Schwarz-Sommer Z; Lifschitz E
    Plant J; 1991 Sep; 1(2):255-66. PubMed ID: 1688249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.
    Zahn LM; Leebens-Mack J; DePamphilis CW; Ma H; Theissen G
    J Hered; 2005; 96(3):225-40. PubMed ID: 15695551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development.
    Navarro C; Efremova N; Golz JF; Rubiera R; Kuckenberg M; Castillo R; Tietz O; Saedler H; Schwarz-Sommer Z
    Development; 2004 Aug; 131(15):3649-59. PubMed ID: 15229173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family.
    Jager M; Hassanin A; Manuel M; Le Guyader H; Deutsch J
    Mol Biol Evol; 2003 May; 20(5):842-54. PubMed ID: 12679535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic framework for floral patterning.
    Parcy F; Nilsson O; Busch MA; Lee I; Weigel D
    Nature; 1998 Oct; 395(6702):561-6. PubMed ID: 9783581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes.
    Mouradov A; Hamdorf B; Teasdale RD; Kim JT; Winter KU; Theissen G
    Dev Genet; 1999 Sep; 25(3):245-52. PubMed ID: 10528265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS.
    Ito T; Wellmer F; Yu H; Das P; Ito N; Alves-Ferreira M; Riechmann JL; Meyerowitz EM
    Nature; 2004 Jul; 430(6997):356-60. PubMed ID: 15254538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin of floral morphological novelties.
    He C; Münster T; Saedler H
    FEBS Lett; 2004 Jun; 567(1):147-51. PubMed ID: 15165908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of MADS-box gene induction by FLO/LFY genes.
    Himi S; Sano R; Nishiyama T; Tanahashi T; Kato M; Ueda K; Hasebe M
    J Mol Evol; 2001; 53(4-5):387-93. PubMed ID: 11675598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplicative transfer of a MADS box gene to a plant Y chromosome.
    Matsunaga S; Isono E; Kejnovsky E; Vyskot B; Dolezel J; Kawano S; Charlesworth D
    Mol Biol Evol; 2003 Jul; 20(7):1062-9. PubMed ID: 12716981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiquity and evolution of the MADS-box gene family controlling flower development in plants.
    Nam J; dePamphilis CW; Ma H; Nei M
    Mol Biol Evol; 2003 Sep; 20(9):1435-47. PubMed ID: 12777513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy.
    Di Stilio VS; Kramer EM; Baum DA
    Plant J; 2005 Mar; 41(5):755-66. PubMed ID: 15703062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.
    Gubitz T; Caldwell A; Hudson A
    Mol Biol Evol; 2003 Sep; 20(9):1537-44. PubMed ID: 12832647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms.
    Stellari GM; Jaramillo MA; Kramer EM
    Mol Biol Evol; 2004 Mar; 21(3):506-19. PubMed ID: 14694075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.