BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 16112065)

  • 41. The rate of false positive sequence matches of peptides profiled by MALDI MS and identified by MS/MS.
    Stoop MP; Lamers RJ; Burgers PC; Sillevis Smitt PA; Hintzen RQ; Luider TM
    J Proteome Res; 2008 Nov; 7(11):4841-7. PubMed ID: 18837534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Peptide sequence analysis.
    Medzihradszky KF
    Methods Enzymol; 2005; 402():209-44. PubMed ID: 16401511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mass spectrometric characterisation of proteins in rennet and in chymosin-based milk-clotting preparations.
    Lilla S; Caira S; Ferranti P; Addeo F
    Rapid Commun Mass Spectrom; 2001; 15(13):1101-12. PubMed ID: 11404847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of electrospray and fast atom bombardment mass spectrometry to the identification of post-translational and other chemical modifications of proteins and peptides.
    Kouach M; Belaïche D; Jaquinod M; Couppez M; Kmiecik D; Ricart G; Van Dorsselaer A; Sautière P; Briand G
    Biol Mass Spectrom; 1994 May; 23(5):283-94. PubMed ID: 8204685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multidigestion in continuous flow tandem protease-immobilized microreactors for proteomic analysis.
    Yamaguchi H; Miyazaki M; Kawazumi H; Maeda H
    Anal Biochem; 2010 Dec; 407(1):12-8. PubMed ID: 20673753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A tandem mass spectrometric approach to the identification of O-glycosylated glargine glycoforms in active pharmaceutical ingredient expressed in Pichia pastoris.
    Kannan V; Narayanaswamy P; Gadamsetty D; Hazra P; Khedkar A; Iyer H
    Rapid Commun Mass Spectrom; 2009 Apr; 23(7):1035-42. PubMed ID: 19253914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of class I phosphoinositide 3-kinase autophosphorylation sites by mass spectrometry.
    Czupalla C; Nürnberg B; Krause E
    Rapid Commun Mass Spectrom; 2003; 17(7):690-6. PubMed ID: 12661022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lys Tag: an easy and robust chemical modification for improved de novo sequencing with a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer.
    Conrotto P; Hellman U
    Rapid Commun Mass Spectrom; 2008 Jun; 22(12):1823-33. PubMed ID: 18470875
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sequence and peptide map of guinea pig aquaporin 0.
    Han J; Little M; David LL; Giblin FJ; Schey KL
    Mol Vis; 2004 Mar; 10():215-22. PubMed ID: 15064681
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemistry. Mass spectrometry: bottom-up or top-down?
    Chait BT
    Science; 2006 Oct; 314(5796):65-6. PubMed ID: 17023639
    [No Abstract]   [Full Text] [Related]  

  • 51. Chemical cross-linking and high-performance Fourier transform ion cyclotron resonance mass spectrometry for protein interaction analysis: application to a calmodulin/target peptide complex.
    Kalkhof S; Ihling C; Mechtler K; Sinz A
    Anal Chem; 2005 Jan; 77(2):495-503. PubMed ID: 15649045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Hardouin J
    Mass Spectrom Rev; 2007; 26(5):672-82. PubMed ID: 17492750
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry.
    Keykhosravani M; Doherty-Kirby A; Zhang C; Brewer D; Goldberg HA; Hunter GK; Lajoie G
    Biochemistry; 2005 May; 44(18):6990-7003. PubMed ID: 15865444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of the complete covalent structure of the gamma 2 subunit of bovine brain G proteins by mass spectrometry.
    Wilcox MD; Schey KL; Busman M; Hildebrandt JD
    Biochem Biophys Res Commun; 1995 Jul; 212(2):367-74. PubMed ID: 7626050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete map and identification of the phosphorylation site of bovine lens major intrinsic protein.
    Schey KL; Fowler JG; Schwartz JC; Busman M; Dillon J; Crouch RK
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2508-15. PubMed ID: 9375569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peptide analysis: solid phase extraction-elution on diamond combined with atmospheric pressure matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry.
    Sabu S; Yang FC; Wang YS; Chen WH; Chou MI; Chang HC; Han CC
    Anal Biochem; 2007 Aug; 367(2):190-200. PubMed ID: 17540329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications.
    Bonaldi T; Imhof A; Regula JT
    Proteomics; 2004 May; 4(5):1382-96. PubMed ID: 15188406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences.
    Becker JS; Jakubowski N
    Chem Soc Rev; 2009 Jul; 38(7):1969-83. PubMed ID: 19551177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4.
    Smith CM; Gafken PR; Zhang Z; Gottschling DE; Smith JB; Smith DL
    Anal Biochem; 2003 May; 316(1):23-33. PubMed ID: 12694723
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications.
    Shah B; Kozlowski RL; Han J; Borchers CH
    Methods Mol Biol; 2011; 773():259-303. PubMed ID: 21898261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.