BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16112076)

  • 21. NAD-independent lactate and butyryl-CoA dehydrogenases of Clostridium acetobutylicum P262.
    Diez-Gonzalez F; Russell JB; Hunter JB
    Curr Microbiol; 1997 Mar; 34(3):162-6. PubMed ID: 9009069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis.
    Jasso-Chávez R; Pacheco-Rosales A; Lira-Silva E; Gallardo-Pérez JC; García N; Moreno-Sánchez R
    Aquat Toxicol; 2010 Nov; 100(4):329-38. PubMed ID: 20851473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM.
    Gao C; Jiang T; Dou P; Ma C; Li L; Kong J; Xu P
    PLoS One; 2012; 7(5):e36519. PubMed ID: 22574176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.
    Gu SA; Jun C; Joo JC; Kim S; Lee SH; Kim YH
    Enzyme Microb Technol; 2014 May; 58-59():29-35. PubMed ID: 24731822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lactate oxidation in Paracoccus denitrificans.
    Kim G; Covian R; Edwards L; He Y; Balaban RS; Levine RL
    Arch Biochem Biophys; 2024 Jun; 756():109988. PubMed ID: 38631502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic, Computational, and Evolutionary Analysis of the d-Lactate Dehydrogenases Responsible for d-Lactic Acid Production in Lactic Acid Bacteria.
    Jia B; Pu ZJ; Tang K; Jia X; Kim KH; Liu X; Jeon CO
    J Agric Food Chem; 2018 Aug; 66(31):8371-8381. PubMed ID: 30008205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two separate pathways for d-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement.
    Pallotta ML; Valenti D; Iacovino M; Passarella S
    Biochim Biophys Acta; 2004 Feb; 1608(2-3):104-13. PubMed ID: 14871487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis.
    Ishikawa T; Masumoto I; Iwasa N; Nishikawa H; Sawa Y; Shibata H; Nakamura A; Yabuta Y; Shigeoka S
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2720-6. PubMed ID: 17090924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. D- and L-lactate dehydrogenases during invertebrate evolution.
    Cristescu ME; Innes DJ; Stillman JH; Crease TJ
    BMC Evol Biol; 2008 Oct; 8():268. PubMed ID: 18828920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prostate cancer cells metabolize d-lactate inside mitochondria via a D-lactate dehydrogenase which is more active and highly expressed than in normal cells.
    de Bari L; Moro L; Passarella S
    FEBS Lett; 2013 Mar; 587(5):467-73. PubMed ID: 23333299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycollate inhibition of growth of Pseudomonas aeruginosa on lactate medium.
    Brown PR; Tata R
    J Gen Microbiol; 1987 Jun; 133(6):1521-6. PubMed ID: 3117962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum.
    Deka RK; Liu WZ; Norgard MV; Brautigam CA
    mBio; 2020 Sep; 11(5):. PubMed ID: 32963009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
    Gao C; Hu C; Zheng Z; Ma C; Jiang T; Dou P; Zhang W; Che B; Wang Y; Lv M; Xu P
    J Bacteriol; 2012 May; 194(10):2687-92. PubMed ID: 22408166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acid tolerance of lactate-utilizing bacteria of the order Bacteroidales contributes to prevention of ruminal acidosis in goats adapted to a high-concentrate diet.
    Lu Z; Kong L; Ren S; Aschenbach JR; Shen H
    Anim Nutr; 2023 Sep; 14():130-140. PubMed ID: 37397354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymes involved in l-lactate metabolism in humans.
    Adeva M; González-Lucán M; Seco M; Donapetry C
    Mitochondrion; 2013 Nov; 13(6):615-29. PubMed ID: 24029012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence of oxygen-sensitive, NADP+-dependent pyruvate dehydrogenase in mitochondria of Euglena gracilis.
    Inui H; Miyatake K; Nakano Y; Kitaoka S
    J Biochem; 1984 Sep; 96(3):931-4. PubMed ID: 6438078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis.
    Yoval-Sánchez B; Jasso-Chávez R; Lira-Silva E; Moreno-Sánchez R; Rodríguez-Zavala JS
    J Bioenerg Biomembr; 2011 Oct; 43(5):519-30. PubMed ID: 21833603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene cloning and biochemical characterization of an alcohol dehydrogenase from Euglena gracilis.
    Palma-Gutiérrez HN; Rodríguez-Zavala JS; Jasso-Chávez R; Moreno-Sánchez R; Saavedra E
    J Eukaryot Microbiol; 2008; 55(6):554-61. PubMed ID: 19120802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic transfer of lactate-utilizing ability in the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Mitchell WJ; Flint HJ
    Lett Appl Microbiol; 1996 Jan; 22(1):52-6. PubMed ID: 8588888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of D-lactate dehydrogenase from Aquifex aeolicus complexed with NAD(+) and lactic acid (or pyruvate).
    Antonyuk SV; Strange RW; Ellis MJ; Bessho Y; Kuramitsu S; Inoue Y; Yokoyama S; Hasnain SS
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Dec; 65(Pt 12):1209-13. PubMed ID: 20054113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.