BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 16112698)

  • 1. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice.
    Dawson JE; Raymond AM; Winn LM
    Toxicol Appl Pharmacol; 2006 Mar; 211(2):124-32. PubMed ID: 16112698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valproate-induced neural tube defects in folate-binding protein-2 (Folbp2) knockout mice.
    Spiegelstein O; Merriweather MY; Wicker NJ; Finnell RH
    Birth Defects Res A Clin Mol Teratol; 2003 Dec; 67(12):974-8. PubMed ID: 14745917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of supplemental folic acid on valproic acid-induced embryotoxicity and tissue zinc levels in vivo.
    Hansen DK; Grafton TF; Dial SL; Gehring TA; Siitonen PH
    Teratology; 1995 Nov; 52(5):277-85. PubMed ID: 8838251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pantothenic acid decreases valproic acid-induced neural tube defects in mice (I).
    Sato M; Shirota M; Nagao T
    Teratology; 1995 Sep; 52(3):143-8. PubMed ID: 8638254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the effects of in utero valproic acid exposure on NF-κB signaling in CD-1 mouse embryos during neural tube closure.
    Shafique S; Winn LM
    Neurotoxicol Teratol; 2021; 83():106941. PubMed ID: 33212164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VPA-induced neural tube defects in mice. I. Altered metabolism of sulfur amino acids and glutathione.
    Hishida R; Nau H
    Teratog Carcinog Mutagen; 1998; 18(2):49-61. PubMed ID: 9704382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects.
    Tung EW; Winn LM
    Mol Pharmacol; 2011 Dec; 80(6):979-87. PubMed ID: 21868484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-κB and inhibition of p53 activation.
    Tsolmongyn B; Koide N; Odkhuu E; Haque A; Naiki Y; Komatsu T; Yoshida T; Yokochi T
    Cell Immunol; 2013 Apr; 282(2):100-5. PubMed ID: 23770718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folic acid and soybean isoflavone combined supplementation protects the post-neural tube closure defects of rodents induced by cyclophosphamide in vivo and in vitro.
    Zhao H; Liang J; Li X; Yu H; Li X; Xiao R
    Neurotoxicology; 2010 Mar; 31(2):180-7. PubMed ID: 20060418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzene-initiated oxidative stress: Effects on embryonic signaling pathways.
    Badham HJ; Renaud SJ; Wan J; Winn LM
    Chem Biol Interact; 2010 Mar; 184(1-2):218-21. PubMed ID: 19913523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myo-inositol enhances teratogenicity of valproic acid in the mouse.
    Massa V; Wlodarczyk B; Giavini E; Finnell RH
    Birth Defects Res A Clin Mol Teratol; 2006 Mar; 76(3):200-4. PubMed ID: 16511884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teratogenicity of valproate conjugates with anticonvulsant activity in mice.
    Spiegelstein O; Chatterjie N; Alexander G; Finnell RH
    Epilepsy Res; 2003 Dec; 57(2-3):145-52. PubMed ID: 15013055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite profiling of whole murine embryos reveals metabolic perturbations associated with maternal valproate-induced neural tube closure defects.
    Akimova D; Wlodarczyk BJ; Lin Y; Ross ME; Finnell RH; Chen Q; Gross SS
    Birth Defects Res; 2017 Jan; 109(2):106-119. PubMed ID: 27860192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valproic acid in pregnancy: how much are we endangering the embryo and fetus?
    Ornoy A
    Reprod Toxicol; 2009 Jul; 28(1):1-10. PubMed ID: 19490988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide reductase subunit R1: a gene conferring sensitivity to valproic acid-induced neural tube defects in mice.
    Craig JC; Bennett GD; Miranda RC; Mackler SA; Finnell RH
    Teratology; 2000 Apr; 61(4):305-13. PubMed ID: 10716750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic modifications in valproic acid-induced teratogenesis.
    Tung EW; Winn LM
    Toxicol Appl Pharmacol; 2010 Nov; 248(3):201-9. PubMed ID: 20705080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teratogenic effects of sodium valproate in mice and rats at midgestation and at term.
    Menegola E; Broccia ML; Nau H; Prati M; Ricolfi R; Giavini E
    Teratog Carcinog Mutagen; 1996; 16(2):97-108. PubMed ID: 8875740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxamic acid and fluorinated derivatives of valproic acid: anticonvulsant activity, neurotoxicity and teratogenicity.
    Gravemann U; Volland J; Nau H
    Neurotoxicol Teratol; 2008; 30(5):390-4. PubMed ID: 18455366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of attenuation of valproic acid-induced effects by folinic acid in rat embryos in vitro.
    Hansen DK; Grafton TF
    Teratology; 1991 Jun; 43(6):575-82. PubMed ID: 1882348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice.
    Okada A; Kushima K; Aoki Y; Bialer M; Fujiwara M
    Birth Defects Res A Clin Mol Teratol; 2005 Apr; 73(4):229-38. PubMed ID: 15799026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.