These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16112818)

  • 1. Vitamin B3 confers resistance to sulfa drugs in Saccharomyces cerevisiae.
    Kornfeld O; Nichols BP
    FEMS Microbiol Lett; 2005 Oct; 251(1):137-41. PubMed ID: 16112818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over-production of dihydrofolate reductase leads to sulfa-dihydropteroate resistance in yeast.
    Patel O; Karnik K; Macreadie IG
    FEMS Microbiol Lett; 2004 Jul; 236(2):301-5. PubMed ID: 15251211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pneumocystis jiroveci dihydropteroate synthase polymorphisms confer resistance to sulfadoxine and sulfanilamide in Saccharomyces cerevisiae.
    Meneau I; Sanglard D; Bille J; Hauser PM
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2610-6. PubMed ID: 15215117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoter strength of folic acid synthesis genes affects sulfa drug resistance in Saccharomyces cerevisiae.
    Iliades P; Berglez J; Meshnick S; Macreadie I
    Microb Drug Resist; 2003; 9(3):249-55. PubMed ID: 12959403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydropteroate synthase mutations in Pneumocystis jiroveci can affect sulfamethoxazole resistance in a Saccharomyces cerevisiae model.
    Iliades P; Meshnick SR; Macreadie IG
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2617-23. PubMed ID: 15215118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfa drug screening in yeast: fifteen sulfa drugs compete with p-aminobenzoate in Saccharomyces cerevisiae.
    Castelli LA; Nguyen NP; Macreadie IG
    FEMS Microbiol Lett; 2001 May; 199(2):181-4. PubMed ID: 11377864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae.
    Ruan H; Yan Z; Sun H; Jiang L
    FEMS Yeast Res; 2007 Mar; 7(2):209-15. PubMed ID: 17002782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae.
    Bayly AM; Berglez JM; Patel O; Castelli LA; Hankins EG; Coloe P; Hopkins Sibley C; Macreadie IG
    FEMS Microbiol Lett; 2001 Nov; 204(2):387-90. PubMed ID: 11731153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of 5-FOA and 5-FU resistance by Saccharomyces cerevisiae YJL055W.
    Ko N; Nishihama R; Pringle JR
    Yeast; 2008 Feb; 25(2):155-60. PubMed ID: 18186026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two mutants selectively resistant to polyenes reveal distinct mechanisms of antifungal activity by nystatin and amphotericin B.
    Hapala I; Klobucníková V; Mazánová K; Kohút P
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1206-9. PubMed ID: 16246082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell biology. A fungal Achilles' heel.
    Heitman J
    Science; 2005 Sep; 309(5744):2175-6. PubMed ID: 16195450
    [No Abstract]   [Full Text] [Related]  

  • 12. Catalysis and sulfa drug resistance in dihydropteroate synthase.
    Yun MK; Wu Y; Li Z; Zhao Y; Waddell MB; Ferreira AM; Lee RE; Bashford D; White SW
    Science; 2012 Mar; 335(6072):1110-4. PubMed ID: 22383850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of sulfa drugs against recombinant Pneumocystis carinii dihydropteroate synthetase and in vivo.
    Hong YL; Hossler P; Bartlett M; Queener S; Smith J; Meshnick S
    J Eukaryot Microbiol; 1996; 43(5):40S. PubMed ID: 8822843
    [No Abstract]   [Full Text] [Related]  

  • 14. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae.
    Abe F; Usui K; Hiraki T
    Biochemistry; 2009 Sep; 48(36):8494-504. PubMed ID: 19670905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis.
    Kotani T; Takagi H
    FEMS Yeast Res; 2008 Jun; 8(4):607-14. PubMed ID: 18373682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A yeast strain biosensor to detect cell wall-perturbing agents.
    Rodriguez-Peña JM; Diez-Muñiz S; Nombela C; Arroyo J
    J Biotechnol; 2008 Feb; 133(3):311-7. PubMed ID: 18055054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of dihydropteroate synthase mutations in Spanish patients with HIV-associated Pneumocystis pneumonia.
    Friaza V; Montes-Cano MA; Respaldiza N; Morilla R; Calderón EJ; de la Horra C
    Diagn Microbiol Infect Dis; 2009 May; 64(1):104-5; author reply 106-7. PubMed ID: 19232864
    [No Abstract]   [Full Text] [Related]  

  • 20. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation.
    Sanglard D; Coste A; Ferrari S
    FEMS Yeast Res; 2009 Oct; 9(7):1029-50. PubMed ID: 19799636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.