BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 16113120)

  • 1. Pulsed interleaved excitation.
    Müller BK; Zaychikov E; Bräuchle C; Lamb DC
    Biophys J; 2005 Nov; 89(5):3508-22. PubMed ID: 16113120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS.
    Hendrix J; Lamb DC
    Methods Mol Biol; 2014; 1076():653-82. PubMed ID: 24108649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed interleaved excitation: principles and applications.
    Hendrix J; Lamb DC
    Methods Enzymol; 2013; 518():205-43. PubMed ID: 23276541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed interleaved excitation fluctuation imaging.
    Hendrix J; Schrimpf W; Höller M; Lamb DC
    Biophys J; 2013 Aug; 105(4):848-61. PubMed ID: 23972837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source.
    Olofsson L; Margeat E
    Opt Express; 2013 Feb; 21(3):3370-8. PubMed ID: 23481797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.
    Smith AW
    Methods Mol Biol; 2015; 1271():205-19. PubMed ID: 25697526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving Membrane Protein-Protein Interactions in Live Cells with Pulsed Interleaved Excitation Fluorescence Cross-Correlation Spectroscopy.
    Christie S; Shi X; Smith AW
    Acc Chem Res; 2020 Apr; 53(4):792-799. PubMed ID: 32227891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements.
    Kudryavtsev V; Sikor M; Kalinin S; Mokranjac D; Seidel CA; Lamb DC
    Chemphyschem; 2012 Mar; 13(4):1060-78. PubMed ID: 22383292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.
    Eggeling C; Kask P; Winkler D; Jäger S
    Biophys J; 2005 Jul; 89(1):605-18. PubMed ID: 15849243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence cross-correlation spectroscopy (FCCS) in living cells.
    Ma X; Foo YH; Wohland T
    Methods Mol Biol; 2014; 1076():557-73. PubMed ID: 24108644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross talk free fluorescence cross correlation spectroscopy in live cells.
    Thews E; Gerken M; Eckert R; Zäpfel J; Tietz C; Wrachtrup J
    Biophys J; 2005 Sep; 89(3):2069-76. PubMed ID: 15951373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed-Interleaved-Excitation Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy.
    Sarkar B; Ishii K; Tahara T
    J Phys Chem B; 2024 May; 128(19):4685-4695. PubMed ID: 38692581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.