These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 16113231)
1. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Gniwotta F; Vogg G; Gartmann V; Carver TL; Riederer M; Jetter R Plant Physiol; 2005 Sep; 139(1):519-30. PubMed ID: 16113231 [TBL] [Abstract][Full Text] [Related]
2. Two sides of a leaf blade: Blumeria graminis needs chemical cues in cuticular waxes of Lolium perenne for germination and differentiation. Ringelmann A; Riedel M; Riederer M; Hildebrandt U Planta; 2009 Jun; 230(1):95-105. PubMed ID: 19352695 [TBL] [Abstract][Full Text] [Related]
3. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Buschhaus C; Herz H; Jetter R Ann Bot; 2007 Dec; 100(7):1557-64. PubMed ID: 17933845 [TBL] [Abstract][Full Text] [Related]
4. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Jetter R; Schäffer S Plant Physiol; 2001 Aug; 126(4):1725-37. PubMed ID: 11500570 [TBL] [Abstract][Full Text] [Related]
5. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Wen M; Buschhaus C; Jetter R Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341 [TBL] [Abstract][Full Text] [Related]
6. Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. van Maarseveen C; Jetter R Phytochemistry; 2009 May; 70(7):899-906. PubMed ID: 19446855 [TBL] [Abstract][Full Text] [Related]
7. Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition. Dragota S; Riederer M Ann Bot; 2007 Aug; 100(2):225-31. PubMed ID: 17611192 [TBL] [Abstract][Full Text] [Related]
8. Micromorphological and Chemical Characterization of Drimys winteri Leaf Surfaces: The Secondary Alcohols Forming Epicuticular Wax Crystals Are Accompanied by Alkanediol, Alkanetriol and Ketol Derivatives. Zhang Z; Mistry D; Jetter R Plant Cell Physiol; 2024 Sep; 65(8):1245-1260. PubMed ID: 38757823 [TBL] [Abstract][Full Text] [Related]
9. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
10. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411 [TBL] [Abstract][Full Text] [Related]
11. Chemical composition of the epicuticular and intracuticular wax layers on the adaxial side of Ligustrum vulgare leaves. Buschhaus C; Herz H; Jetter R New Phytol; 2007; 176(2):311-316. PubMed ID: 17696977 [TBL] [Abstract][Full Text] [Related]
12. Interaction of organic solvents with the epicuticular wax layer of wheat leaves. Myung K; Parobek AP; Godbey JA; Bowling AJ; Pence HE J Agric Food Chem; 2013 Sep; 61(37):8737-42. PubMed ID: 23964787 [TBL] [Abstract][Full Text] [Related]
13. Surface composition of myrmecophilic plants: cuticular wax and glandular trichomes on leaves of Macaranga tanarius. Guhling O; Kinzler C; Dreyer M; Bringmann G; Jetter R J Chem Ecol; 2005 Oct; 31(10):2323-41. PubMed ID: 16195846 [TBL] [Abstract][Full Text] [Related]
14. Developmental Changes in Composition and Morphology of Cuticular Waxes on Leaves and Spikes of Glossy and Glaucous Wheat (Triticum aestivum L.). Wang Y; Wang J; Chai G; Li C; Hu Y; Chen X; Wang Z PLoS One; 2015; 10(10):e0141239. PubMed ID: 26506246 [TBL] [Abstract][Full Text] [Related]
15. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides. Racovita RC; Jetter R Phytochemistry; 2016 Oct; 130():252-61. PubMed ID: 27402630 [TBL] [Abstract][Full Text] [Related]
16. Amphistomy: stomata patterning inferred from 13C content and leaf-side-specific deposition of epicuticular wax. Askanbayeva B; Janová J; Kubásek J; Zeisler-Diehl VV; Schreiber L; Muir CD; Šantrůček J Ann Bot; 2024 Aug; 134(3):437-454. PubMed ID: 38836501 [TBL] [Abstract][Full Text] [Related]
17. Host surface properties affect prepenetration processes in the barley powdery mildew fungus. Zabka V; Stangl M; Bringmann G; Vogg G; Riederer M; Hildebrandt U New Phytol; 2008; 177(1):251-263. PubMed ID: 17937760 [TBL] [Abstract][Full Text] [Related]
18. Micromorphology of epicuticular wax structures of the garden strawberry leaves by electron microscopy: syntopism and polymorphism. Kim KW; Ahn JJ; Lee JH Micron; 2009 Apr; 40(3):327-34. PubMed ID: 19101160 [TBL] [Abstract][Full Text] [Related]
19. A Proposed Method for Simultaneous Measurement of Cuticular Transpiration From Different Leaf Surfaces in Zhang Y; Chen X; Du Z; Zhang W; Devkota AR; Chen Z; Chen C; Sun W; Chen M Front Plant Sci; 2020; 11():420. PubMed ID: 32477374 [TBL] [Abstract][Full Text] [Related]
20. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities. Xiao Y; Li X; Yao L; Xu D; Li Y; Zhang X; Li Z; Xiao Q; Ni Y; Guo Y Plant Physiol Biochem; 2020 Oct; 155():596-604. PubMed ID: 32846395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]