These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16113761)

  • 21. Spatiotemporal chaos in excised larynx vibrations.
    Zhang Y; Jiang JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):035201. PubMed ID: 16241503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
    Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M
    J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anterior-posterior biphonation in a finite element model of vocal fold vibration.
    Tao C; Jiang JJ
    J Acoust Soc Am; 2006 Sep; 120(3):1570-7. PubMed ID: 17004479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications.
    Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH
    J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of the false vocal fold gaps on intralaryngeal pressure distributions and their effects on phonation.
    Li S; Wan M; Wang S
    Sci China C Life Sci; 2008 Nov; 51(11):1045-51. PubMed ID: 18989648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of irregular vibration in a physical model of the vocal folds.
    Berry DA; Zhang Z; Neubauer J
    J Acoust Soc Am; 2006 Sep; 120(3):EL36-42. PubMed ID: 17004496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
    Xue Q; Zheng X; Mittal R; Bielamowicz S
    J Voice; 2014 Jul; 28(4):411-9. PubMed ID: 24725589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generalized procedure for analyzing sustained and dynamic vocal fold vibrations from laryngeal high-speed videos using phonovibrograms.
    Unger J; Schuster M; Hecker DJ; Schick B; Lohscheller J
    Artif Intell Med; 2016 Jan; 66():15-28. PubMed ID: 26597002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T; Schwarz R; Döllinger M; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2006 Aug; 120(2):1012-27. PubMed ID: 16938988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the medial surface of the vocal folds.
    Berry DA; Clark MJ; Montequin DW; Titze IR
    Ann Otol Rhinol Laryngol; 2001 May; 110(5 Pt 1):470-7. PubMed ID: 11372933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ventricular-fold dynamics in human phonation.
    Bailly L; Bernardoni NH; Müller F; Rohlfs AK; Hess M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1219-42. PubMed ID: 24687091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Basic research on vocal fold dynamics: three-dimensional vibration analysis of human and canine larynges].
    Döllinger M; Rosanowski F; Eysholdt U; Lohscheller J
    HNO; 2008 Dec; 56(12):1213-20. PubMed ID: 17431569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance properties of the vocal folds: in vivo laryngoscopic investigation of the externally excited laryngeal vibrations.
    Svec JG; Horácek J; Sram F; Veselý J
    J Acoust Soc Am; 2000 Oct; 108(4):1397-407. PubMed ID: 11051466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of Porcine Vocal Fold Geometry.
    Stevens KA; Thomson SL; Jetté ME; Thibeault SL
    J Voice; 2016 Jul; 30(4):416-26. PubMed ID: 26292797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges.
    Ouaknine M; Garrel R; Giovanni A
    Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computation of the three-dimensional medial surface dynamics of the vocal folds.
    Döllinger M; Berry DA
    J Biomech; 2006; 39(2):369-74. PubMed ID: 16321641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.