These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16114251)

  • 1. Liquid chromatography of polymers under limiting conditions of adsorption. IV. Sample recovery.
    Snauko M; Berek D; Hunkeler D
    J Chromatogr A; 2005 Aug; 1084(1-2):173-9. PubMed ID: 16114251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid chromatography of polymers under limiting conditions of desorption II. Tandem injection and quantitative molar mass determination.
    Snauko M; Berek D
    J Chromatogr A; 2005 Nov; 1094(1-2):42-8. PubMed ID: 16257287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid chromatography of polymers under limiting conditions of adsorption: III. Role of experimental variables.
    Snauko M; Berek D
    J Sep Sci; 2005 Nov; 28(16):2094-103. PubMed ID: 16318205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on high-performance size-exclusion chromatography of synthetic polymers. I. Volume of silica gel column packing pores reduced by retained macromolecules.
    Simeková M; Berek D
    J Chromatogr A; 2005 Aug; 1084(1-2):167-72. PubMed ID: 16114250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid chromatography of synthetic polymers under critical conditions of enthalpic interactions 4: sample recovery.
    Sišková A; Macová E; Corradini D; Berek D
    J Sep Sci; 2013 Sep; 36(18):2979-85. PubMed ID: 23857733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enthalpy assisted size exclusion chromatography. Part 2. Adsorption retention mechanism.
    Russ A; Berek D
    J Sep Sci; 2007 Aug; 30(12):1852-9. PubMed ID: 17638347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of high-performance liquid chromatography column retentivity using macromolecular probes I.
    Berek D
    J Chromatogr A; 2002 Mar; 950(1-2):75-80. PubMed ID: 11991009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of liquid chromatography column retentivity using macromolecular probes. III. Partition properties of C18 phases traced by polymers.
    Berek D
    J Chromatogr A; 2003 Dec; 1020(2):219-28. PubMed ID: 14661745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-online nanoflow liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry of synthetic polymers using an octadecylsilyl-modified monolithic silica capillary column.
    Watanabe T; Nakanishi K; Ozawa T; Kawasaki H; Ute K; Arakawa R
    Rapid Commun Mass Spectrom; 2010 Jul; 24(13):1835-41. PubMed ID: 20533313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size exclusion chromatography-gradients, an alternative approach to polymer gradient chromatography: 2. Separation of poly(meth)acrylates using a size exclusion chromatography-solvent/non-solvent gradient.
    Schollenberger M; Radke W
    J Chromatogr A; 2011 Oct; 1218(43):7828-31. PubMed ID: 21939977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.
    Altuntaş E; Schubert US
    Anal Chim Acta; 2014 Jan; 808():56-69. PubMed ID: 24370093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid chromatography under limiting conditions of desorption 6: separation of a four-component polymer blend.
    Berek D; Macová E
    J Sep Sci; 2015 Feb; 38(4):543-9. PubMed ID: 25483890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical compositional separation of styrene-methyl methacrylate copolymers using high-performance liquid chromatography with liquefied carbon dioxide as eluent.
    Kawai E; Shimoyama K; Ogino K; Sato H
    J Chromatogr A; 2003 Apr; 991(2):197-203. PubMed ID: 12741599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakthrough of polymers in interactive liquid chromatography.
    Jiang X; van der Horst A; Schoenmakers PJ
    J Chromatogr A; 2002 Dec; 982(1):55-68. PubMed ID: 12489856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The retention behavior of diblock copolymers in gradient chromatography; Similarities of diblock copolymers and homopolymers.
    Radke W
    J Chromatogr A; 2019 May; 1593():17-23. PubMed ID: 30683527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic solvent modifier and temperature effects in non-aqueous size-exclusion chromatography on reversed-phase columns.
    Caltabiano AM; Foley JP; Striegel AM
    J Chromatogr A; 2018 Jan; 1531():83-103. PubMed ID: 29180220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.
    Chatterjee T; Rickard MA; Pearce E; Pangburn TO; Li Y; Lyons JW; Cong R; deGroot AW; Meunier DM
    J Chromatogr A; 2016 Sep; 1465():107-16. PubMed ID: 27590085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of high-performance liquid chromatography column retentivity using macromolecular probes. II. Silanophilic interactivity traced by highly polar polymers.
    Berek D; Tarbajovská J
    J Chromatogr A; 2002 Nov; 976(1-2):27-37. PubMed ID: 12462593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of copolymers using high-performance liquid chromatography with polymeric stationary phase and liquefied carbon dioxide as adsorption promoting solvent.
    Takahashi M; Shimoyama K; Kyotani C; Sato H; Ogino K
    J Chromatogr A; 2005 Aug; 1084(1-2):201-6. PubMed ID: 16114255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.