These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16114459)

  • 21. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.
    Ali N; Eliyas M; Al-Sarawi H; Radwan SS
    Chemosphere; 2011 May; 83(9):1268-72. PubMed ID: 21507457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crude oil degradation by microorganisms isolated from the marine environment.
    Cerniglia CE; Perry JJ
    Z Allg Mikrobiol; 1973; 13(4):299-306. PubMed ID: 4797813
    [No Abstract]   [Full Text] [Related]  

  • 23. [Synergy between fungi and bacteria in fungi-bacteria augmented remediation of petroleum-contaminated soil].
    Han HL; Tang J; Jiang H; Zhang ML; Liu Z
    Huan Jing Ke Xue; 2008 Jan; 29(1):189-95. PubMed ID: 18441939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycoremediation of crude oil contaminated soil by specific fungi isolated from Dhahran in Saudi Arabia.
    Al-Dhabaan FA
    Saudi J Biol Sci; 2021 Jan; 28(1):73-77. PubMed ID: 33424285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of crude oil biodegradation using mixed fungal cultures.
    El-Aziz ARMA; Al-Othman MR; Hisham SM; Shehata SM
    PLoS One; 2021; 16(8):e0256376. PubMed ID: 34437564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils.
    Zhang Z; Gai L; Hou Z; Yang C; Ma C; Wang Z; Sun B; He X; Tang H; Xu P
    Bioresour Technol; 2010 Nov; 101(21):8452-6. PubMed ID: 20573503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Bio-remediation techniques of crude oil contaminated soils].
    Li P; Guo S; Sun T; Tai P; Zhang C; Bai Y; Sun Q; Sheng P
    Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1455-8. PubMed ID: 12625007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrocarbon bioremediation potential of an unimpacted Kuwaiti oil-field environment.
    Obuekwe C; Hourani G; Radwan S
    Acta Microbiol Pol; 2003; 52(4):405-17. PubMed ID: 15095928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation of petroleum refinery wastewater by fungal stains isolated from the fishing harbour of Bizerte (Mediterranean Sea).
    El Ayari T; Bouhdida R; Ouzari HI; El Menif NT
    Biodegradation; 2024 Aug; 35(5):755-767. PubMed ID: 38687419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the profiles of seedborne fungi and the occurrence of aflatoxins in mould-damaged beans and soybeans.
    Tseng TC; Tu JC; Soo LC
    Microbios; 1995; 84(339):105-16. PubMed ID: 8628121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula.
    Thouand G; Bauda P; Oudot J; Kirsch G; Sutton C; Vidalie JF
    Can J Microbiol; 1999 Feb; 45(2):106-15. PubMed ID: 10380643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Occurrence of crude oil degrading bacteria in gasoline and diesel station soils.
    Rahman KS; Rahman T; Lakshmanaperumalsamy P; Banat IM
    J Basic Microbiol; 2002; 42(4):284-91. PubMed ID: 12210553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms.
    Chaillan F; Le Flèche A; Bury E; Phantavong YH; Grimont P; Saliot A; Oudot J
    Res Microbiol; 2004 Sep; 155(7):587-95. PubMed ID: 15313261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Field scale demonstration of fungi-bacteria augmented remediation of petroleum-contaminated soil].
    Han HL; Chen Z; Yang JM; Miao CC; Zhang K; Jin WB; Liu Z
    Huan Jing Ke Xue; 2008 Feb; 29(2):454-61. PubMed ID: 18613520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of culturable fungi inhabiting petroleum-contaminated soils in Southern Iran.
    Mohammadian E; Arzanlou M; Babai-Ahari A
    Antonie Van Leeuwenhoek; 2017 Jul; 110(7):903-923. PubMed ID: 28353091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains.
    Asemoloye MD; Ahmad R; Jonathan SG
    Environ Pollut; 2018 Apr; 235():55-64. PubMed ID: 29274538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal deterioration of melon seeds stored in jute sacks and polyethylene bags in Ago-Iwoye, southwestern Nigeria.
    Bankole SA; Ikotun B; Ekpo EJ
    Mycopathologia; 1999; 146(3):135-46. PubMed ID: 16284865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada.
    April TM; Foght JM; Currah RS
    Can J Microbiol; 2000 Jan; 46(1):38-49. PubMed ID: 10696470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert.
    Cruz-Hernańdez M; Contreras-Esquivel JC; Lara F; Rodríguez R; Aguilar CN
    Z Naturforsch C J Biosci; 2005; 60(11-12):844-8. PubMed ID: 16402543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in mutagenicity during crude oil degradation by fungi.
    Rudd LE; Perry JJ; Houk VS; Williams RW; Claxton LD
    Biodegradation; 1996 Aug; 7(4):335-43. PubMed ID: 8987891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.