These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16114487)

  • 1. Synthesis of decapeptide of L-aspartic acid and benzyl-L-aspartic acid by solid phase peptide synthesis.
    Yoo BK; Miah MA; Lee ES; Han K
    Arch Pharm Res; 2005 Jul; 28(7):756-60. PubMed ID: 16114487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid beta-benzyl ester.
    Süli-Vargha H; Schlosser G; Ilas J
    J Pept Sci; 2007 Nov; 13(11):742-8. PubMed ID: 17853501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and conformation of sequential polypeptides containing epsilon-benzyloxycarbonyl-lysine and benzyl esters of aspartic and glutamic acids.
    Daoust H; St-Pierre S
    J Chem Soc Perkin 1; 1976; (13):1453-7. PubMed ID: 988044
    [No Abstract]   [Full Text] [Related]  

  • 4. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-phase synthesis and CD spectroscopic investigations of novel beta-peptides from L-aspartic acid and beta-amino-L-alanine.
    Ahmed S; Beleid R; Sprules T; Kaur K
    Org Lett; 2007 Jan; 9(1):25-8. PubMed ID: 17192076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis.
    Palasek SA; Cox ZJ; Collins JM
    J Pept Sci; 2007 Mar; 13(3):143-8. PubMed ID: 17121420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cyclopentyl ester protection for aspartic acid to reduce base catalyzed succinimide formation in solid-phase peptide synthesis.
    Blake J
    Int J Pept Protein Res; 1979 Apr; 13(4):418-25. PubMed ID: 457335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side reactions in peptide synthesis. VI. A reexamination of the benzyl group in the protection of the side chains of tyrosine and aspartic acid.
    Bodanszky M; Tolle JC; Deshmane SS; Bodanszky A
    Int J Pept Protein Res; 1978 Aug; 12(2):57-68. PubMed ID: 711371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of an amino acid analogue to incorporate p-aminobenzyl-EDTA in peptides.
    Song AI; Rana TM
    Bioconjug Chem; 1997; 8(2):249-52. PubMed ID: 9095368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protection of aspartic acid, serine, and threonine in solid-phase peptide synthesis.
    Yamashiro D
    J Org Chem; 1977 Feb; 42(3):523-5. PubMed ID: 833703
    [No Abstract]   [Full Text] [Related]  

  • 11. Amino acids and peptides. XX. Preparation of beta-cyclododecyl aspartate and its application to synthesis of fibronectin- and laminin-related peptides.
    Kawasaki K; Murakami T; Koshino K; Namikawa M; Maeda M; Hama T; Mayumi T
    Chem Pharm Bull (Tokyo); 1994 Apr; 42(4):792-5. PubMed ID: 8020120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.
    Ahmed S; Sprules T; Kaur K
    Biopolymers; 2014 Jul; 102(4):359-67. PubMed ID: 24852341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniting polypeptides with sequence-designed peptides: synthesis and assembly of poly(gamma-benzyl L-glutamate)-b-coiled-coil peptide copolymers.
    Marsden HR; Handgraaf JW; Nudelman F; Sommerdijk NA; Kros A
    J Am Chem Soc; 2010 Feb; 132(7):2370-7. PubMed ID: 20108940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Access to cyclic or branched peptides using bis(2-sulfanylethyl)amido side-chain derivatives of Asp and Glu.
    Boll E; Dheur J; Drobecq H; Melnyk O
    Org Lett; 2012 May; 14(9):2222-5. PubMed ID: 22537053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of copoly(L-aspartic acid/L-glutamic acid) in vitro.
    Hayashi T; Iwatsuki M
    Biopolymers; 1990 Feb; 29(3):549-57. PubMed ID: 1691931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tag-assisted liquid-phase peptide synthesis using hydrophobic benzyl alcohols as supports.
    Okada Y; Suzuki H; Nakae T; Fujita S; Abe H; Nagano K; Yamada T; Ebata N; Kim S; Chiba K
    J Org Chem; 2013 Jan; 78(2):320-7. PubMed ID: 23215232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side reactions in peptide synthesis. VII. Sequence dependence in the formation of aminosuccinyl derivatives from beta-benzyl-aspartyl peptides.
    Bodanszky M; Kwei JZ
    Int J Pept Protein Res; 1978 Aug; 12(2):69-74. PubMed ID: 711372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselective synthesis of beta-benzyl-alpha-alkyl-beta-amino acids from L-aspartic acid.
    Seki M; Shimizu T; Matsumoto K
    J Org Chem; 2000 Mar; 65(5):1298-304. PubMed ID: 10814089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance and optical spectroscopic studies of copolymers of polypeptides. II. Random copoly(benzyl-l-glutamate:benzyl-L-aspartate) and (benzyl-D-glutamate:benzyl-L-aspartate).
    Paolillo L; Temussi PA; Bradbury EM; Crane-Robinson C
    Biopolymers; 1972; 11(10):2043-52. PubMed ID: 5078387
    [No Abstract]   [Full Text] [Related]  

  • 20. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture.
    Hill MR; MacKrell EJ; Forsthoefel CP; Jensen SP; Chen M; Moore GA; He ZL; Sumerlin BS
    Biomacromolecules; 2015 Apr; 16(4):1276-82. PubMed ID: 25756603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.