These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16114680)

  • 1. The development and calibration of a physical model to assist in optimising the hydraulic performance and design of maturation ponds.
    Aldana GJ; Lloyd BJ; Guganesharajah K; Bracho N
    Water Sci Technol; 2005; 51(12):173-81. PubMed ID: 16114680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing hydraulic short-circuiting in maturation ponds to maximize pathogen removal using channels and wind breaks.
    Lloyd BJ; Vorkas CA; Guganesharajah RK
    Water Sci Technol; 2003; 48(2):153-62. PubMed ID: 14510206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of guidelines for improved hydraulic design of waste stabilisation ponds.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):173-80. PubMed ID: 14510208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taking wind into account in the design of waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2010; 61(4):937-44. PubMed ID: 20182072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of CFD modelling to study the hydrodynamics of various anaerobic pond configurations.
    Vega GP; Peña MR; Ramírez C; Mara DD
    Water Sci Technol; 2003; 48(2):163-71. PubMed ID: 14510207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations in BOD, algal biomass and organic matter biodegradation constants in a wind-mixed tropical facultative waste stabilization pond.
    Meneses CG; Saraiva LB; Melo HN; de Melo JL; Pearson HW
    Water Sci Technol; 2005; 51(12):183-90. PubMed ID: 16114681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixing and its impact on faecal coliform removal in a stabilisation pond.
    Brissaud F; Tournoud MG; Drakides C; Lazarova V
    Water Sci Technol; 2003; 48(2):75-80. PubMed ID: 14510196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spatial significance of water quality indicators in waste stabilization ponds--limitations of residence time distribution analysis in predicting treatment efficiency.
    Sweeney DG; Cromar NJ; Nixon JB; Ta CT; Fallowfield HJ
    Water Sci Technol; 2003; 48(2):211-8. PubMed ID: 14510213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of mixing patterns in pilot-scale anaerobic ponds treating domestic sewage.
    Peña MR; Mara DD; Piguet JM
    Water Sci Technol; 2003; 48(2):235-42. PubMed ID: 14510216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing ponds for post-treatment of digested sewage. Part 1: Flow-through ponds.
    Cavalcanti PF; van Haandel A; Lettinga G
    Water Sci Technol; 2001; 44(4):237-45. PubMed ID: 11575089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications for physical design: The effect of depth on the performance of waste stabilization ponds.
    Pearson HW; Silva Athayde ST; Athayde GB; Silva SA
    Water Sci Technol; 2005; 51(12):69-74. PubMed ID: 16114665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compartmental model to describe hydraulics in a full-scale waste stabilization pond.
    Alvarado A; Vedantam S; Goethals P; Nopens I
    Water Res; 2012 Feb; 46(2):521-30. PubMed ID: 22137448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced pond system: performance with high rate ponds of different depths and areas.
    Craggs RJ; Davies-Colley RJ; Tanner CC; Sukias JP
    Water Sci Technol; 2003; 48(2):259-67. PubMed ID: 14510219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling and modelling of thermal changes in a large waste stabilisation pond.
    Sweeney DG; Nixon JB; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):163-72. PubMed ID: 16114679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond.
    Shilton A; Harrison J
    Water Sci Technol; 2003; 48(2):205-10. PubMed ID: 14510212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid flow pattern and water residence time in waste stabilisation ponds.
    Badrot-Nico F; Guinot V; Brissaud F
    Water Sci Technol; 2009; 59(6):1061-8. PubMed ID: 19342800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of pond velocities using dye and small drogues: a case study of the Nelson City waste stabilisation pond.
    Barter PJ
    Water Sci Technol; 2003; 48(2):145-51. PubMed ID: 14510205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.
    Passos RG; von Sperling M; Ribeiro TB
    Water Sci Technol; 2014; 70(3):569-75. PubMed ID: 25098890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baffled primary facultative ponds with inlets and outlets set at different levels treating domestic wastewater in northeast Brazil.
    De Oliveira R; Pearson HW; Silva JV; Sousa JT; Leite VD; Lopes WS
    Water Sci Technol; 2011; 63(6):1183-7. PubMed ID: 21436554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of classical surface organic loading design equations based on the actual performance of primary and secondary facultative ponds.
    Oliveira SC; von Sperling M
    Water Sci Technol; 2010; 61(4):971-7. PubMed ID: 20182076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.