These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
436 related articles for article (PubMed ID: 16114879)
1. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues. Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879 [TBL] [Abstract][Full Text] [Related]
2. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima. Maglia G; Javed MH; Allemann RK Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545 [TBL] [Abstract][Full Text] [Related]
3. Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritima. Loveridge EJ; Rodriguez RJ; Swanwick RS; Allemann RK Biochemistry; 2009 Jun; 48(25):5922-33. PubMed ID: 19453185 [TBL] [Abstract][Full Text] [Related]
4. Effects of temperature and viscosity on R67 dihydrofolate reductase catalysis. Chopra S; Lynch R; Kim SH; Jackson M; Howell EE Biochemistry; 2006 May; 45(21):6596-605. PubMed ID: 16716070 [TBL] [Abstract][Full Text] [Related]
5. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. Pang J; Pu J; Gao J; Truhlar DG; Allemann RK J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517 [TBL] [Abstract][Full Text] [Related]
6. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234 [TBL] [Abstract][Full Text] [Related]
7. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
8. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability. Dams T; Auerbach G; Bader G; Jacob U; Ploom T; Huber R; Jaenicke R J Mol Biol; 2000 Mar; 297(3):659-72. PubMed ID: 10731419 [TBL] [Abstract][Full Text] [Related]
9. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase. Loveridge EJ; Tey LH; Allemann RK J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant. Cameron CE; Benkovic SJ Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309 [TBL] [Abstract][Full Text] [Related]
11. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant. Luk LY; Ruiz-Pernía JJ; Dawson WM; Loveridge EJ; Tuñón I; Moliner V; Allemann RK J Am Chem Soc; 2014 Dec; 136(49):17317-23. PubMed ID: 25396728 [TBL] [Abstract][Full Text] [Related]
13. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase. Swanwick RS; Maglia G; Tey LH; Allemann RK Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906 [TBL] [Abstract][Full Text] [Related]
14. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase. Watney JB; Hammes-Schiffer S J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474 [TBL] [Abstract][Full Text] [Related]
15. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli. Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297 [TBL] [Abstract][Full Text] [Related]
16. The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from Thermotoga maritima is influenced by intersubunit interactions. Loveridge EJ; Allemann RK Biochemistry; 2010 Jun; 49(25):5390-6. PubMed ID: 20515024 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594 [TBL] [Abstract][Full Text] [Related]
18. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases. Loveridge EJ; Behiry EM; Swanwick RS; Allemann RK J Am Chem Soc; 2009 May; 131(20):6926-7. PubMed ID: 19419144 [TBL] [Abstract][Full Text] [Related]
19. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis. Maglia G; Allemann RK J Am Chem Soc; 2003 Nov; 125(44):13372-3. PubMed ID: 14583029 [TBL] [Abstract][Full Text] [Related]
20. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein. Oyeyemi OA; Sours KM; Lee T; Kohen A; Resing KA; Ahn NG; Klinman JP Biochemistry; 2011 Sep; 50(38):8251-60. PubMed ID: 21859100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]