BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 16114879)

  • 1. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.
    Maglia G; Javed MH; Allemann RK
    Biochem J; 2003 Sep; 374(Pt 2):529-35. PubMed ID: 12765545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritima.
    Loveridge EJ; Rodriguez RJ; Swanwick RS; Allemann RK
    Biochemistry; 2009 Jun; 48(25):5922-33. PubMed ID: 19453185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature and viscosity on R67 dihydrofolate reductase catalysis.
    Chopra S; Lynch R; Kim SH; Jackson M; Howell EE
    Biochemistry; 2006 May; 45(21):6596-605. PubMed ID: 16716070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of dihydrofolate reductase from Thermotoga maritima: molecular features of thermostability.
    Dams T; Auerbach G; Bader G; Jacob U; Ploom T; Huber R; Jaenicke R
    J Mol Biol; 2000 Mar; 297(3):659-72. PubMed ID: 10731419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Tey LH; Allemann RK
    J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.
    Luk LY; Ruiz-Pernía JJ; Dawson WM; Loveridge EJ; Tuñón I; Moliner V; Allemann RK
    J Am Chem Soc; 2014 Dec; 136(49):17317-23. PubMed ID: 25396728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homo-dimeric recombinant dihydrofolate reductase from Thermotoga maritima shows extreme intrinsic stability.
    Dams T; Böhm G; Auerbach G; Bader G; Schurig H; Jaenicke R
    Biol Chem; 1998 Mar; 379(3):367-71. PubMed ID: 9563834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The temperature dependence of the kinetic isotope effects of dihydrofolate reductase from Thermotoga maritima is influenced by intersubunit interactions.
    Loveridge EJ; Allemann RK
    Biochemistry; 2010 Jun; 49(25):5390-6. PubMed ID: 20515024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria.
    Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C
    J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different reaction mechanisms for mesophilic and thermophilic dihydrofolate reductases.
    Loveridge EJ; Behiry EM; Swanwick RS; Allemann RK
    J Am Chem Soc; 2009 May; 131(20):6926-7. PubMed ID: 19419144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for environmentally coupled hydrogen tunneling during dihydrofolate reductase catalysis.
    Maglia G; Allemann RK
    J Am Chem Soc; 2003 Nov; 125(44):13372-3. PubMed ID: 14583029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.
    Oyeyemi OA; Sours KM; Lee T; Kohen A; Resing KA; Ahn NG; Klinman JP
    Biochemistry; 2011 Sep; 50(38):8251-60. PubMed ID: 21859100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.