These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16114894)

  • 41. Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity.
    Crooks GE; Rees GD; Robinson BH; Svensson M; Stephenson GR
    Biotechnol Bioeng; 1995 Nov; 48(3):190-6. PubMed ID: 18623477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface.
    Han ZL; Han SY; Zheng SP; Lin Y
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):117-26. PubMed ID: 19533118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Role of hydrophobic interactions in manifestation of catalytic activity of lipolytic enzymes].
    Rakhimov MM; Dzhanbaeva NR
    Biokhimiia; 1977 Jun; 42(6):971-84. PubMed ID: 889976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609.
    Dalal S; Singh PK; Raghava S; Rawat S; Gupta MN
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipase regio- and stereoselectivities toward three enantiomeric pairs of didecanoyl-deoxyamino-O methyl glycerol: a kinetic study by the monomolecular film technique.
    Douchet I; De Haas G; Verger R
    Chirality; 2003 Mar; 15(3):220-6. PubMed ID: 12582987
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad.
    Nyon MP; Rice DW; Berrisford JM; Hounslow AM; Moir AJ; Huang H; Nathan S; Mahadi NM; Bakar FD; Craven CJ
    J Mol Biol; 2009 Jan; 385(1):226-35. PubMed ID: 18983850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cold active microbial lipases: some hot issues and recent developments.
    Joseph B; Ramteke PW; Thomas G
    Biotechnol Adv; 2008; 26(5):457-70. PubMed ID: 18571355
    [TBL] [Abstract][Full Text] [Related]  

  • 48. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi.
    Ruiu L; Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2006; 19(4):372-8. PubMed ID: 16779873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose.
    Cai Q; Hu C; Yang N; Wang Q; Wang J; Pan H; Hu Y; Ruan C
    Int J Biol Macromol; 2018 Apr; 109():1174-1181. PubMed ID: 29157911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipases efficiently stearate and cutinases acetylate the surface of arabinoxylan films.
    Stepan AM; Anasontzis GE; Matama T; Cavaco-Paulo A; Olsson L; Gatenholm P
    J Biotechnol; 2013 Aug; 167(1):16-23. PubMed ID: 23774036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined X-ray diffraction and QM/MM study of the Burkholderia cepacia lipase-catalyzed secondary alcohol esterification.
    Luić M; Stefanić Z; Ceilinger I; Hodoscek M; Janezic D; Lenac T; Asler IL; Sepac D; Tomić S
    J Phys Chem B; 2008 Apr; 112(16):4876-83. PubMed ID: 18386861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recyclable chaperone-conjugated magnetic beads for in vitro refolding of Burkholderia cepacia lipase.
    Jung S; Park S
    Biotechnol Lett; 2009 Jan; 31(1):107-11. PubMed ID: 18791662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases.
    Shah S; Gupta MN
    Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interfacial binding of cutinase rather than its catalytic activity determines the steady state interfacial tension during oil drop lipid hydrolysis.
    Flipsen JA; van Schaick MA; Dijkman R; van der Hijden HT; Verheij HM; Egmond MR
    Chem Phys Lipids; 1999 Feb; 97(2):181-91. PubMed ID: 10192932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of ascorbyl palmitate by surfactant-coated lipase in organic media.
    Hsieh HJ; Nair GR; Wu WT
    J Agric Food Chem; 2006 Aug; 54(16):5777-81. PubMed ID: 16881677
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On-line low-volume transesterification-based assay for immobilized lipases.
    Urban PL; Goodall DM; Bergström ET; Bruce NC
    J Biotechnol; 2006 Dec; 126(4):508-18. PubMed ID: 16793159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protonation of the binuclear metal center within the active site of phosphotriesterase.
    Samples CR; Howard T; Raushel FM; DeRose VJ
    Biochemistry; 2005 Aug; 44(33):11005-13. PubMed ID: 16101284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site.
    Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A
    Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
    Scholze H; Stütz H; Paltauf F; Hermetter A
    Anal Biochem; 1999 Dec; 276(1):72-80. PubMed ID: 10585746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.