BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16115065)

  • 1. Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens.
    Rosenbaum Hofmann N; Theg SM
    Plant J; 2005 Sep; 43(5):675-87. PubMed ID: 16115065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana.
    Aronsson H; Boij P; Patel R; Wardle A; Töpel M; Jarvis P
    Plant J; 2007 Oct; 52(1):53-68. PubMed ID: 17655652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRUMPLED LEAF (CRL) homologs of Physcomitrella patens are involved in the complete separation of dividing plastids.
    Sugita C; Kato Y; Yoshioka Y; Tsurumi N; Iida Y; Machida Y; Sugita M
    Plant Cell Physiol; 2012 Jun; 53(6):1124-33. PubMed ID: 22514088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins.
    Hofmann NR; Theg SM
    Plant J; 2005 Dec; 44(6):917-27. PubMed ID: 16359385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physcomitrella patens as a model for the study of chloroplast protein transport: conserved machineries between vascular and non-vascular plants.
    Hofmann NR; Theg SM
    Plant Mol Biol; 2003 Nov; 53(5):621-32. PubMed ID: 15010601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription of plastid genes is modulated by two nuclear-encoded alpha subunits of plastid RNA polymerase in the moss Physcomitrella patens.
    Kabeya Y; Kobayashi Y; Suzuki H; Itoh J; Sugita M
    Plant J; 2007 Nov; 52(4):730-41. PubMed ID: 17894784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning of the PpNHAD1 transporter of Physcomitrella patens, a chloroplast transporter highly conserved in photosynthetic eukaryotic organisms.
    Barrero-Gil J; Rodríguez-Navarro A; Benito B
    J Exp Bot; 2007; 58(11):2839-49. PubMed ID: 17617660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of mutant lines with decreased numbers of chloroplasts per cell from a tagged mutant library of the moss Physcomitrella patens.
    Hayashida A; Takechi K; Sugiyama M; Kubo M; Itoh RD; Takio S; Fujita T; Hiwatashi Y; Hasebe M; Takano H
    Plant Biol (Stuttg); 2005 May; 7(3):300-6. PubMed ID: 15912450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a pentatricopeptide repeat RNA editing factor in Physcomitrella patens chloroplasts.
    Ichinose M; Uchida M; Sugita M
    FEBS Lett; 2014 Nov; 588(21):4060-4. PubMed ID: 25277299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development.
    Garcia M; Myouga F; Takechi K; Sato H; Nabeshima K; Nagata N; Takio S; Shinozaki K; Takano H
    Plant J; 2008 Mar; 53(6):924-34. PubMed ID: 18036201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens.
    Utsunomiya H; Saiki N; Kadoguchi H; Fukudome M; Hashimoto S; Ueda M; Takechi K; Takano H
    Plant Mol Biol; 2021 Nov; 107(4-5):405-415. PubMed ID: 33078277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens.
    Shi LX; Theg SM
    Plant Cell; 2010 Jan; 22(1):205-20. PubMed ID: 20061551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nucleus-encoded topological specificity factor PpMinE in Physcomitrella patens has conserved function similar to its chloroplast-encoded ancestor.
    Zhu J; Liu W; Zhou W; Hu Y; He Y
    J Genet Genomics; 2007 Mar; 34(3):229-38. PubMed ID: 17498620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import.
    Kovacheva S; Bédard J; Wardle A; Patel R; Jarvis P
    Plant J; 2007 Apr; 50(2):364-79. PubMed ID: 17376159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis.
    Constan D; Patel R; Keegstra K; Jarvis P
    Plant J; 2004 Apr; 38(1):93-106. PubMed ID: 15053763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles of nitrate and nitrite in regulation of expression of the nitrate transport genes in the moss Physcomitrella patens.
    Tsujimoto R; Yamazaki H; Maeda S; Omata T
    Plant Cell Physiol; 2007 Mar; 48(3):484-97. PubMed ID: 17289796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of three PDI-like genes in Physcomitrella patens and construction of knock-out mutants.
    Meiri E; Levitan A; Guo F; Christopher DA; Schaefer D; Zrÿd JP; Danon A
    Mol Genet Genomics; 2002 Apr; 267(2):231-40. PubMed ID: 11976967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toc33 and Toc64-III cooperate in precursor protein import into the chloroplasts of Arabidopsis thaliana.
    Sommer M; Rudolf M; Tillmann B; Tripp J; Sommer MS; Schleiff E
    Plant Cell Environ; 2013 May; 36(5):970-83. PubMed ID: 23131143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physcomitrella HMGA-type proteins display structural differences compared to their higher plant counterparts.
    Lyngaard C; Stemmer C; Stensballe A; Graf M; Gorr G; Decker E; Grasser KD
    Biochem Biophys Res Commun; 2008 Oct; 374(4):653-7. PubMed ID: 18662672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.