These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16115688)

  • 1. The dimycocerosate ester polyketide virulence factors of mycobacteria.
    Onwueme KC; Vos CJ; Zurita J; Ferreras JA; Quadri LE
    Prog Lipid Res; 2005 Sep; 44(5):259-302. PubMed ID: 16115688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids.
    Gokhale RS; Saxena P; Chopra T; Mohanty D
    Nat Prod Rep; 2007 Apr; 24(2):267-77. PubMed ID: 17389997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid.
    Trivedi OA; Arora P; Vats A; Ansari MZ; Tickoo R; Sridharan V; Mohanty D; Gokhale RS
    Mol Cell; 2005 Mar; 17(5):631-43. PubMed ID: 15749014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities.
    Jackson M; Stadthagen G; Gicquel B
    Tuberculosis (Edinb); 2007 Mar; 87(2):78-86. PubMed ID: 17030019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond.
    Quadri LE
    Crit Rev Biochem Mol Biol; 2014; 49(3):179-211. PubMed ID: 24625105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyketide versatility in the biosynthesis of complex mycobacterial cell wall lipids.
    Chopra T; Gokhale RS
    Methods Enzymol; 2009; 459():259-94. PubMed ID: 19362644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatility of polyketide synthases in generating metabolic diversity.
    Gokhale RS; Sankaranarayanan R; Mohanty D
    Curr Opin Struct Biol; 2007 Dec; 17(6):736-43. PubMed ID: 17935970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis.
    Rao A; Ranganathan A
    Mol Genet Genomics; 2004 Dec; 272(5):571-9. PubMed ID: 15668773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biosynthetic logic of polyketide diversity.
    Hertweck C
    Angew Chem Int Ed Engl; 2009; 48(26):4688-716. PubMed ID: 19514004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways.
    González-Lergier J; Broadbelt LJ; Hatzimanikatis V
    J Am Chem Soc; 2005 Jul; 127(27):9930-8. PubMed ID: 15998100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis.
    Siméone R; Léger M; Constant P; Malaga W; Marrakchi H; Daffé M; Guilhot C; Chalut C
    FEBS J; 2010 Jun; 277(12):2715-25. PubMed ID: 20553505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis.
    Jain M; Cox JS
    PLoS Pathog; 2005 Sep; 1(1):e2. PubMed ID: 16201014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.
    Siméone R; Constant P; Guilhot C; Daffé M; Chalut C
    J Bacteriol; 2007 Jul; 189(13):4597-602. PubMed ID: 17468241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and heterologous transcription of a polyketide synthase gene from the lichen Solorina crocea.
    Gagunashvili AN; Davídsson SP; Jónsson ZO; Andrésson OS
    Mycol Res; 2009 Mar; 113(Pt 3):354-63. PubMed ID: 19100326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets.
    Cox RJ
    Org Biomol Chem; 2007 Jul; 5(13):2010-26. PubMed ID: 17581644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation.
    Ferreras JA; Stirrett KL; Lu X; Ryu JS; Soll CE; Tan DS; Quadri LE
    Chem Biol; 2008 Jan; 15(1):51-61. PubMed ID: 18158259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal type I polyketide synthases.
    Cox RJ; Simpson TJ
    Methods Enzymol; 2009; 459():49-78. PubMed ID: 19362635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic engineering to produce polyketide analogues.
    Reeves CD; Rodriguez E
    Methods Enzymol; 2009; 459():295-318. PubMed ID: 19362645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.