BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

708 related articles for article (PubMed ID: 16115812)

  • 1. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism.
    Seong IS; Ivanova E; Lee JM; Choo YS; Fossale E; Anderson M; Gusella JF; Laramie JM; Myers RH; Lesort M; MacDonald ME
    Hum Mol Genet; 2005 Oct; 14(19):2871-80. PubMed ID: 16115812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism.
    Lee JM; Ivanova EV; Seong IS; Cashorali T; Kohane I; Gusella JF; MacDonald ME
    PLoS Genet; 2007 Aug; 3(8):e135. PubMed ID: 17708681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of overexpression of huntingtin proteins on mitochondrial integrity.
    Wang H; Lim PJ; Karbowski M; Monteiro MJ
    Hum Mol Genet; 2009 Feb; 18(4):737-52. PubMed ID: 19039036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dysfunction in Huntington's disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice.
    Oliveira JM; Jekabsons MB; Chen S; Lin A; Rego AC; Gonçalves J; Ellerby LM; Nicholls DG
    J Neurochem; 2007 Apr; 101(1):241-9. PubMed ID: 17394466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Striatal neurons expressing full-length mutant huntingtin exhibit decreased N-cadherin and altered neuritogenesis.
    Reis SA; Thompson MN; Lee JM; Fossale E; Kim HH; Liao JK; Moskowitz MA; Shaw SY; Dong L; Haggarty SJ; MacDonald ME; Seong IS
    Hum Mol Genet; 2011 Jun; 20(12):2344-55. PubMed ID: 21447599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice.
    Lloret A; Dragileva E; Teed A; Espinola J; Fossale E; Gillis T; Lopez E; Myers RH; MacDonald ME; Wheeler VC
    Hum Mol Genet; 2006 Jun; 15(12):2015-24. PubMed ID: 16687439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
    Huang CC; Faber PW; Persichetti F; Mittal V; Vonsattel JP; MacDonald ME; Gusella JF
    Somat Cell Mol Genet; 1998 Jul; 24(4):217-33. PubMed ID: 10410676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum.
    Oliveira JM
    J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deranged neuronal calcium signaling and Huntington disease.
    Bezprozvanny I; Hayden MR
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1310-7. PubMed ID: 15336977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of the miniature pig Huntington's disease gene homolog: evidence for conservation and polymorphism in the CAG triplet repeat.
    Matsuyama N; Hadano S; Onoe K; Osuga H; Showguchi-Miyata J; Gondo Y; Ikeda JE
    Genomics; 2000 Oct; 69(1):72-85. PubMed ID: 11013077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism in HD: still a relevant mechanism?
    Duan W; Jiang M; Jin J
    Mov Disord; 2014 Sep; 29(11):1366-74. PubMed ID: 25124273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HD CAG-correlated gene expression changes support a simple dominant gain of function.
    Jacobsen JC; Gregory GC; Woda JM; Thompson MN; Coser KR; Murthy V; Kohane IS; Gusella JF; Seong IS; MacDonald ME; Shioda T; Lee JM
    Hum Mol Genet; 2011 Jul; 20(14):2846-60. PubMed ID: 21536587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington's disease.
    Fernandes HB; Baimbridge KG; Church J; Hayden MR; Raymond LA
    J Neurosci; 2007 Dec; 27(50):13614-23. PubMed ID: 18077673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release.
    Choo YS; Johnson GV; MacDonald M; Detloff PJ; Lesort M
    Hum Mol Genet; 2004 Jul; 13(14):1407-20. PubMed ID: 15163634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin.
    Cyr M; Sotnikova TD; Gainetdinov RR; Caron MG
    FASEB J; 2006 Dec; 20(14):2541-3. PubMed ID: 17065224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity.
    Cowan CM; Fan MM; Fan J; Shehadeh J; Zhang LY; Graham RK; Hayden MR; Raymond LA
    J Neurosci; 2008 Nov; 28(48):12725-35. PubMed ID: 19036965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative metabolism in YAC128 mouse model of Huntington's disease.
    Hamilton J; Pellman JJ; Brustovetsky T; Harris RA; Brustovetsky N
    Hum Mol Genet; 2015 Sep; 24(17):4862-78. PubMed ID: 26041817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetics in Huntington's disease.
    Grünewald T; Beal MF
    Ann N Y Acad Sci; 1999; 893():203-13. PubMed ID: 10672239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.