BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16115880)

  • 1. Docking and rolling, a model of how the mitotic motor Eg5 works.
    Rosenfeld SS; Xing J; Jefferson GM; King PH
    J Biol Chem; 2005 Oct; 280(42):35684-95. PubMed ID: 16115880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic analysis of the mitotic kinesin Eg5.
    Cochran JC; Sontag CA; Maliga Z; Kapoor TM; Correia JJ; Gilbert SP
    J Biol Chem; 2004 Sep; 279(37):38861-70. PubMed ID: 15247293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural kinetics of switch-1 and the neck linker explain the functions of kinesin-1 and Eg5.
    Muretta JM; Jun Y; Gross SP; Major J; Thomas DD; Rosenfeld SS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6606-13. PubMed ID: 26627252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monastrol inhibition of the mitotic kinesin Eg5.
    Cochran JC; Gatial JE; Kapoor TM; Gilbert SP
    J Biol Chem; 2005 Apr; 280(13):12658-67. PubMed ID: 15665380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ATPase cycle of the mitotic motor CENP-E.
    Rosenfeld SS; van Duffelen M; Behnke-Parks WM; Beadle C; Corrreia J; Xing J
    J Biol Chem; 2009 Nov; 284(47):32858-68. PubMed ID: 19759394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop L5 assumes three distinct orientations during the ATPase cycle of the mitotic kinesin Eg5: a transient and time-resolved fluorescence study.
    Muretta JM; Behnke-Parks WM; Major J; Petersen KJ; Goulet A; Moores CA; Thomas DD; Rosenfeld SS
    J Biol Chem; 2013 Nov; 288(48):34839-49. PubMed ID: 24145034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family.
    Goulet A; Major J; Jun Y; Gross SP; Rosenfeld SS; Moores CA
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1837-42. PubMed ID: 24449904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker.
    Turner J; Anderson R; Guo J; Beraud C; Fletterick R; Sakowicz R
    J Biol Chem; 2001 Jul; 276(27):25496-502. PubMed ID: 11328809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimeric Eg5 maintains processivity through alternating-site catalysis with rate-limiting ATP hydrolysis.
    Krzysiak TC; Gilbert SP
    J Biol Chem; 2006 Dec; 281(51):39444-54. PubMed ID: 17062577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
    Bell KM; Cha HK; Sindelar CV; Cochran JC
    J Biol Chem; 2017 Sep; 292(35):14680-14694. PubMed ID: 28701465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinesin switch I arginine to lysine mutation rescues microtubule function.
    Klumpp LM; Mackey AT; Farrell CM; Rosenberg JM; Gilbert SP
    J Biol Chem; 2003 Oct; 278(40):39059-67. PubMed ID: 12860992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromokinesins NOD and KID Use Distinct ATPase Mechanisms and Microtubule Interactions To Perform a Similar Function.
    Walker BC; Tempel W; Zhu H; Park H; Cochran JC
    Biochemistry; 2019 May; 58(18):2326-2338. PubMed ID: 30973712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring kinesin's first step.
    Rosenfeld SS; Xing J; Jefferson GM; Cheung HC; King PH
    J Biol Chem; 2002 Sep; 277(39):36731-9. PubMed ID: 12122000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the structural and dynamical features of kinesin motor domains.
    Scarabelli G; Grant BJ
    PLoS Comput Biol; 2013; 9(11):e1003329. PubMed ID: 24244137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinesin has three nucleotide-dependent conformations. Implications for strain-dependent release.
    Xing J; Wriggers W; Jefferson GM; Stein R; Cheung HC; Rosenfeld SS
    J Biol Chem; 2000 Nov; 275(45):35413-23. PubMed ID: 10852922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5.
    Brier S; Lemaire D; Debonis S; Forest E; Kozielski F
    Biochemistry; 2004 Oct; 43(41):13072-82. PubMed ID: 15476401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinesin motor in a force-producing conformation.
    Heuston E; Bronner CE; Kull FJ; Endow SA
    BMC Struct Biol; 2010 Jul; 10():19. PubMed ID: 20602775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting in sync with dimeric Eg5. Initiation and regulation of the processive run.
    Krzysiak TC; Grabe M; Gilbert SP
    J Biol Chem; 2008 Jan; 283(4):2078-87. PubMed ID: 18037705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pathway of structural changes produced by monastrol binding to Eg5.
    Maliga Z; Xing J; Cheung H; Juszczak LJ; Friedman JM; Rosenfeld SS
    J Biol Chem; 2006 Mar; 281(12):7977-82. PubMed ID: 16434397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis of force generation by the mitotic motor kinesin-5.
    Goulet A; Behnke-Parks WM; Sindelar CV; Major J; Rosenfeld SS; Moores CA
    J Biol Chem; 2012 Dec; 287(53):44654-66. PubMed ID: 23135273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.