BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16116287)

  • 21. Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables.
    Sawa T; Nakao M; Akaike T; Ono K; Maeda H
    J Agric Food Chem; 1999 Feb; 47(2):397-402. PubMed ID: 10563906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Canolol and its derivatives: A novel bioactive with antioxidant and anticancer properties.
    Nandasiri R; Eskin NAM
    Adv Food Nutr Res; 2022; 100():109-129. PubMed ID: 35659350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenolic compounds from the fruit of Garcinia dulcis.
    Deachathai S; Mahabusarakam W; Phongpaichit S; Taylor WC
    Phytochemistry; 2005 Oct; 66(19):2368-75. PubMed ID: 16111726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkyl peroxyl radical-scavenging activity of catechins.
    Nakao M; Takio S; Ono K
    Phytochemistry; 1998 Dec; 49(8):2379-82. PubMed ID: 9887529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free radical scavenging activities and inhibition of inflammatory enzymes of phenolics isolated from Tripodanthus acutifolius.
    Soberón JR; Sgariglia MA; Sampietro DA; Quiroga EN; Vattuone MA
    J Ethnopharmacol; 2010 Jul; 130(2):329-33. PubMed ID: 20488234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HPLC-ESIMS(n) profiling, isolation, structural elucidation, and evaluation of the antioxidant potential of phenolics from Paepalanthus geniculatus.
    do Amaral FP; Napolitano A; Masullo M; dos Santos LC; Festa M; Vilegas W; Pizza C; Piacente S
    J Nat Prod; 2012 Apr; 75(4):547-56. PubMed ID: 22506638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.
    Joshi KR; Devkota HP; Watanabe T; Yahara S
    Nat Prod Res; 2014; 28(23):2208-10. PubMed ID: 24825068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kładna A
    Luminescence; 2005; 20(2):81-9. PubMed ID: 15803505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine.
    Maldonado PD; Alvarez-Idaboy JR; Aguilar-González A; Lira-Rocha A; Jung-Cook H; Medina-Campos ON; Pedraza-Chaverrí J; Galano A
    J Phys Chem B; 2011 Nov; 115(45):13408-17. PubMed ID: 21995683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction.
    Fernandes AS; Nogara GP; Menezes CR; Cichoski AJ; Mercadante AZ; Jacob-Lopes E; Zepka LQ
    Food Res Int; 2017 Sep; 99(Pt 3):1036-1041. PubMed ID: 28865614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals.
    Regoli F; Winston GW
    Toxicol Appl Pharmacol; 1999 Apr; 156(2):96-105. PubMed ID: 10198274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of lipid peroxyl radicals from edible oils and their biological activities: a need for consideration for anti-radical components and purification processing.
    Kanazawa A; Sawa T; Akaike T; Morimur S; Kida K; Maeda H
    Biofactors; 2000; 13(1-4):187-93. PubMed ID: 11237181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of rapeseed oil with superhigh canolol content and superior quality characteristics by steam explosion pretreatment technology.
    Yu G; Guo T; Huang Q
    Food Sci Nutr; 2020 May; 8(5):2271-2278. PubMed ID: 32405384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting.
    Gracka A; Jeleń HH; Majcher M; Siger A; Kaczmarek A
    J Chromatogr A; 2016 Jan; 1428():292-304. PubMed ID: 26592559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2,3-Dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran: design and evaluation as a novel radical-scavenging antioxidant against lipid peroxidation.
    Noguchi N; Iwaki Y; Takahashi M; Komuro E; Kato Y; Tamura K; Cynshi O; Kodama T; Niki E
    Arch Biochem Biophys; 1997 Jun; 342(2):236-43. PubMed ID: 9186484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redoxcitrinin, a biogenetic precursor of citrinin from marine isolate of fungus Penicillium sp.
    Zhang D; Li X; Kang JS; Choi HD; Jung JH; Son BW
    J Microbiol Biotechnol; 2007 May; 17(5):865-7. PubMed ID: 18051311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New dihydroalkylhexenones from Lannea edulis.
    Queiroz EF; Kuhl C; Terreaux C; Mavi S; Hostettmann K
    J Nat Prod; 2003 Apr; 66(4):578-80. PubMed ID: 12713423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical.
    Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE
    Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material.
    Almela L; Sánchez-Muñoz B; Fernández-López JA; Roca MJ; Rabe V
    J Chromatogr A; 2006 Jul; 1120(1-2):221-9. PubMed ID: 16563403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenolic compounds from the aqueous extract of Acacia catechu.
    Li XC; Liu C; Yang LX; Chen RY
    J Asian Nat Prod Res; 2011 Sep; 13(9):826-30. PubMed ID: 21830887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.