BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16116620)

  • 1. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars.
    Barbehenn R; Dodick T; Poopat U; Spencer B
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars.
    Barbehenn RV; Stannard J
    J Insect Physiol; 2004 Sep; 50(9):783-90. PubMed ID: 15350499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Barbehenn RV; Maben RE; Knoester JJ
    Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry.
    Barbehenn RV; Poopat U; Spencer B
    Insect Biochem Mol Biol; 2003 Jan; 33(1):125-30. PubMed ID: 12459207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.
    Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM
    J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves.
    Barbehenn RV; Walker AC; Uddin F
    J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
    Barbehenn R; Weir Q; Salminen JP
    J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria.
    Barbehenn RV; Kochmanski J; Menachem B; Poirier LM
    Arch Insect Biochem Physiol; 2013 Oct; 84(2):90-103. PubMed ID: 24038202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    Oecologia; 2009 Apr; 159(4):777-88. PubMed ID: 19148684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress?
    Krishnan N; Kodrík D
    J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dps proteins prevent Fenton-mediated oxidative damage by trapping hydroxyl radicals within the protein shell.
    Bellapadrona G; Ardini M; Ceci P; Stefanini S; Chiancone E
    Free Radic Biol Med; 2010 Jan; 48(2):292-7. PubMed ID: 19892013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry.
    Karowe DN
    Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.
    Deguillaume L; Leriche M; Chaumerliac N
    Chemosphere; 2005 Jul; 60(5):718-24. PubMed ID: 15963810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection by tropolones against H2O2-induced DNA damage and apoptosis in cultured Jurkat cells.
    Doulias PT; Nousis L; Zhu BZ; Frei B; Galaris D
    Free Radic Res; 2005 Feb; 39(2):125-35. PubMed ID: 15763960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins.
    Gross EM; Brune A; Walenciak O
    J Insect Physiol; 2008 Feb; 54(2):462-71. PubMed ID: 18171578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of hydroxyl radicals in the human lens is related to the severity of nuclear cataract.
    Garner B; Davies MJ; Truscott RJ
    Exp Eye Res; 2000 Jan; 70(1):81-8. PubMed ID: 10644423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets.
    Pinto-Tomás AA; Sittenfeld A; Uribe-Lorío L; Chavarría F; Mora M; Janzen DH; Goodman RM; Simon HM
    Environ Entomol; 2011 Oct; 40(5):1111-22. PubMed ID: 22251723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.