BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16117461)

  • 1. In vitro validation of the Affinity NT oxygenator arterial outlet temperatures.
    Potger KC; McMillan D
    J Extra Corpor Technol; 2005 Jun; 37(2):207-12. PubMed ID: 16117461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygenator safety evaluation: a focus on connection grip strength and arterial temperature measurement accuracy.
    Newland RF; Baker RA; Sanderson AJ; Tuble SC; Tully PJ
    J Extra Corpor Technol; 2012 Jun; 44(2):53-9. PubMed ID: 22893983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology: Clinical Practice Guidelines for Cardiopulmonary Bypass--Temperature Management During Cardiopulmonary Bypass.
    Engelman R; Baker RA; Likosky DS; Grigore A; Dickinson TA; Shore-Lesserson L; Hammon JW
    J Cardiothorac Vasc Anesth; 2015 Aug; 29(4):1104-13. PubMed ID: 26279227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of temperature measurement in the cardiopulmonary bypass circuit.
    Newland RF; Sanderson AJ; Baker RA
    J Extra Corpor Technol; 2005 Mar; 37(1):32-7. PubMed ID: 15804154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of the transoesophageal echocardiography probe as an oesophageal temperature monitor in patients undergoing cardiac surgery with cardiopulmonary bypass: a prospective observational study.
    Misra S; Das PK; Srinivasan A
    Eur J Cardiothorac Surg; 2023 Aug; 64(2):. PubMed ID: 37341638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature inaccuracies during cardiopulmonary bypass.
    Salah M; Sutton R; Tsarovsky G; Djuric M
    J Extra Corpor Technol; 2005 Mar; 37(1):38-42. PubMed ID: 15804155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass.
    Graham JM; Gibbs NM; Weightman WM; Sheminant MR
    Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of an instrument to measure carbon dioxide tension at the oxygenator gas outlet in cardiopulmonary bypass.
    Kristiansen F; Høgetveit JO; Pedersen TH
    Perfusion; 2006 Jan; 21(1):21-6. PubMed ID: 16485695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air Transmission Comparison of the Affinity Fusion Oxygenator with an Integrated Arterial Filter to the Affinity NT Oxygenator with a Separate Arterial Filter.
    Potger KC; McMillan D; Ambrose M
    J Extra Corpor Technol; 2014 Sep; 46(3):229-38. PubMed ID: 26357789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature during cardiopulmonary bypass: the discrepancies between monitored sites.
    Nussmeier NA; Cheng W; Marino M; Spata T; Li S; Daniels G; Clark T; Vaughn WK
    Anesth Analg; 2006 Dec; 103(6):1373-9. PubMed ID: 17122206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.
    Ferguson ER; Clymer JJ; Spruell RD; Holman WL
    ASAIO J; 1994; 40(3):M649-53. PubMed ID: 8555594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Condensation and Gas Exchange Correlation in Different Models and Fibers of Blood Oxygenators: "How Can We Improve Performance?".
    Condello I
    J Extra Corpor Technol; 2020 Mar; 52(1):43-51. PubMed ID: 32280143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates.
    Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD
    Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of nine hollow-fibre membrane oxygenators.
    Segers PA; Heida JF; de Vries I; Maas C; Boogaart AJ; Eilander S
    Perfusion; 2001 Mar; 16(2):95-106. PubMed ID: 11334201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass: an echocardiographic study.
    Geissler HJ; Allen SJ; Mehlhorn U; Davis KL; de Vivie ER; Kurusz M; Butler BD
    Ann Thorac Surg; 1997 Jul; 64(1):100-4. PubMed ID: 9236342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of CO2 exchange during cardiopulmonary bypass: the effect of oxygenator design on the applicability of capnometry.
    Aittomäki J
    Perfusion; 1993; 8(4):337-44. PubMed ID: 10171988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygenator exhaust capnography: a method of estimating arterial carbon dioxide tension during cardiopulmonary bypass.
    Zia M; Davies FW; Alston RP; Anaes FC
    J Cardiothorac Vasc Anesth; 1992 Feb; 6(1):42-5. PubMed ID: 1543852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass.
    Baraka A; El-Khatib M; Muallem E; Jamal S; Haroun-Bizri S; Aouad M
    J Extra Corpor Technol; 2005 Jun; 37(2):192-5. PubMed ID: 16117458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator.
    Sutton RG; Riley JB; Merrill JH
    J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.