These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
603 related articles for article (PubMed ID: 16117765)
1. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765 [TBL] [Abstract][Full Text] [Related]
2. Analysis of cell-seeded 3-dimensional bone constructs manufactured in vitro with hydroxyapatite granules obtained from red algae. Turhani D; Watzinger E; Weissenböck M; Cvikl B; Thurnher D; Wittwer G; Yerit K; Ewers R J Oral Maxillofac Surg; 2005 May; 63(5):673-81. PubMed ID: 15883943 [TBL] [Abstract][Full Text] [Related]
3. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
4. Expression pattern of the chromosome 21 transcription factor Ets2 in cell-seeded three-dimensional bone constructs. Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Ewers R; Thurnher D J Biomed Mater Res A; 2005 Jun; 73(4):445-55. PubMed ID: 15900611 [TBL] [Abstract][Full Text] [Related]
5. Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling. Balloni S; Calvi EM; Damiani F; Bistoni G; Calvitti M; Locci P; Becchetti E; Marinucci L Int J Oral Maxillofac Implants; 2009; 24(4):627-35. PubMed ID: 19885402 [TBL] [Abstract][Full Text] [Related]
6. Effect of different biomaterials on the expression pattern of the transcription factor Ets2 in bone-like constructs. Sutter W; Stein E; Koehn J; Schmidl C; Lezaic V; Ewers R; Turhani D J Craniomaxillofac Surg; 2009 Jul; 37(5):263-71. PubMed ID: 19318269 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
9. Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro. Jäger M; Feser T; Denck H; Krauspe R Ann Biomed Eng; 2005 Oct; 33(10):1319-32. PubMed ID: 16240081 [TBL] [Abstract][Full Text] [Related]
10. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Shi X; Wang Y; Varshney RR; Ren L; Gong Y; Wang DA Eur J Pharm Sci; 2010 Jan; 39(1-3):59-67. PubMed ID: 19895885 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T; Abdel-Fattah WI; Laurencin CT Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408 [TBL] [Abstract][Full Text] [Related]
12. Collagen I gel can facilitate homogenous bone formation of adipose-derived stem cells in PLGA-beta-TCP scaffold. Hao W; Hu YY; Wei YY; Pang L; Lv R; Bai JP; Xiong Z; Jiang M Cells Tissues Organs; 2008; 187(2):89-102. PubMed ID: 17938566 [TBL] [Abstract][Full Text] [Related]
13. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation by bone marrow mesenchymal stem cells cultured in three-dimensional biodegradable polymer scaffolds. Tanaka T; Hirose M; Kotobuki N; Tadokoro M; Ohgushi H; Fukuchi T; Sato J; Seto K J Biomed Mater Res A; 2009 Nov; 91(2):428-35. PubMed ID: 18985782 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of in vivo bone regeneration efficacy of osteogenically undifferentiated human cord blood mesenchymal stem cells. Kang JM; Kang SW; La WG; Yang YS; Kim BS J Biomed Mater Res A; 2010 May; 93(2):666-72. PubMed ID: 19609878 [TBL] [Abstract][Full Text] [Related]
16. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
17. Characterization of human bone cells derived from the maxillary alveolar ridge. Clausen C; Hermund NU; Donatsky O; Nielsen H Clin Oral Implants Res; 2006 Oct; 17(5):533-40. PubMed ID: 16958693 [TBL] [Abstract][Full Text] [Related]
18. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Morsczeck C Calcif Tissue Int; 2006 Feb; 78(2):98-102. PubMed ID: 16467978 [TBL] [Abstract][Full Text] [Related]
19. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
20. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Bjerre L; Bünger CE; Kassem M; Mygind T Biomaterials; 2008 Jun; 29(17):2616-27. PubMed ID: 18374976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]