BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16118016)

  • 1. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique.
    Harley BA; Hastings AZ; Yannas IV; Sannino A
    Biomaterials; 2006 Feb; 27(6):866-74. PubMed ID: 16118016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
    Haugh MG; Murphy CM; O'Brien FJ
    Tissue Eng Part C Methods; 2010 Oct; 16(5):887-94. PubMed ID: 19903089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-property relationships in mineralized collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2009 May; 5(4):1006-18. PubMed ID: 19121982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering.
    Brouwer KM; van Rensch P; Harbers VE; Geutjes PJ; Koens MJ; Wijnen RM; Daamen WF; van Kuppevelt TH
    J Tissue Eng Regen Med; 2011 Jun; 5(6):501-4. PubMed ID: 21604385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-property relationships in collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2010 Feb; 6(2):344-53. PubMed ID: 19770077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold.
    Harley BA; Lynn AK; Wissner-Gross Z; Bonfield W; Yannas IV; Gibson LJ
    J Biomed Mater Res A; 2010 Mar; 92(3):1066-77. PubMed ID: 19301274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration.
    Kanungo BP; Silva E; Van Vliet K; Gibson LJ
    Acta Biomater; 2008 May; 4(3):490-503. PubMed ID: 18294943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen-based matrices with axially oriented pores.
    Madaghiele M; Sannino A; Yannas IV; Spector M
    J Biomed Mater Res A; 2008 Jun; 85(3):757-67. PubMed ID: 17896767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of collagen-glycosaminoglycan sponges with open surface porous structures using ice particulate template method.
    Ko YG; Grice S; Kawazoe N; Tateishi T; Chen G
    Macromol Biosci; 2010 Aug; 10(8):860-71. PubMed ID: 20491127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering.
    Wang A; Ao Q; Cao W; Yu M; He Q; Kong L; Zhang L; Gong Y; Zhang X
    J Biomed Mater Res A; 2006 Oct; 79(1):36-46. PubMed ID: 16758450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis.
    Vlierberghe SV; Cnudde V; Dubruel P; Masschaele B; Cosijns A; Paepe ID; Jacobs PJ; Hoorebeke LV; Remon JP; Schacht E
    Biomacromolecules; 2007 Feb; 8(2):331-7. PubMed ID: 17291055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds.
    O'Brien FJ; Harley BA; Yannas IV; Gibson L
    Biomaterials; 2004 Mar; 25(6):1077-86. PubMed ID: 14615173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering.
    O'Brien FJ; Harley BA; Waller MA; Yannas IV; Gibson LJ; Prendergast PJ
    Technol Health Care; 2007; 15(1):3-17. PubMed ID: 17264409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH; Park IK; Kim JM; Lee JH
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of collagen-glycosaminoglycan blended nanofibrous scaffolds and their biological properties.
    Zhong S; Teo WE; Zhu X; Beuerman R; Ramakrishna S; Yung LY
    Biomacromolecules; 2005; 6(6):2998-3004. PubMed ID: 16283719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell proliferation and migration in silk fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Primary study on histocompatibility of three kinds of collagen-chitosan porous scaffolds].
    Hu X; Han C; Shi H; Ma L; Gao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Oct; 19(10):826-30. PubMed ID: 16274135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.