BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16118025)

  • 1. Methylene blue photoinactivation abolishes West Nile virus infectivity in vivo.
    Papin JF; Floyd RA; Dittmer DP
    Antiviral Res; 2005 Nov; 68(2):84-7. PubMed ID: 16118025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. West Nile virus in plasma is highly sensitive to methylene blue-light treatment.
    Mohr H; Knüver-Hopf J; Gravemann U; Redecker-Klein A; Müller TH
    Transfusion; 2004 Jun; 44(6):886-90. PubMed ID: 15157256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylene blue photoinactivation of RNA viruses.
    Floyd RA; Schneider JE; Dittmer DP
    Antiviral Res; 2004 Mar; 61(3):141-51. PubMed ID: 15168794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion.
    Rios M; Zhang MJ; Grinev A; Srinivasan K; Daniel S; Wood O; Hewlett IK; Dayton AI
    Transfusion; 2006 Apr; 46(4):659-67. PubMed ID: 16584445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Nile virus neutralization by US plasma-derived immunoglobulin products.
    Planitzer CB; Modrof J; Kreil TR
    J Infect Dis; 2007 Aug; 196(3):435-40. PubMed ID: 17597458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Israeli strain IS-98-ST1 of West Nile virus as viral model for West Nile encephalitis in the Old World.
    Lucas M; Frenkiel MP; Mashimo T; Guénet JL; Deubel V; Desprès P; Ceccaldi PE
    Virol J; 2004 Nov; 1():9. PubMed ID: 15550172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. West Nile virus transmission via organ transplantation and blood transfusion - Louisiana, 2008.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2009 Nov; 58(45):1263-7. PubMed ID: 19940831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No evidence of West Nile virus infection in Dutch blood donors.
    Koppelman MH; Sjerps MS; de Waal M; Reesink HW; Cuypers HT
    Vox Sang; 2006 Apr; 90(3):166-9. PubMed ID: 16507015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive TaqMan RT-PCR assay for detection and quantification of both lineages of West Nile virus RNA.
    Tang Y; Anne Hapip C; Liu B; Fang CT
    J Clin Virol; 2006 Jul; 36(3):177-82. PubMed ID: 16675298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of West Nile virus in the Mexican blood supply.
    Sánchez-Guerrero SA; Romero-Estrella S; Rodríguez-Ruiz A; Infante-Ramírez L; Gómez A; Villanueva-Vidales E; García-Torres M; Domínguez AM; Vázquez JA; Calderón ED; Valiente-Banuet L; Linnen JM; Broulik A; Harel W; Marín Y López RA
    Transfusion; 2006 Jan; 46(1):111-7. PubMed ID: 16398739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive cell-based assay for the detection of residual infectious West Nile virus.
    Koldijk MH; Bogaards JA; Kostense S; de Vocht M; Gijsbers L; Ter Haak M; Ophorst C; Brakenhoff JP; Weverling GJ; Guichoux JY; Uytdehaag F; Lewis J; Goudsmit J; Marzio G
    Vaccine; 2007 Sep; 25(39-40):6872-81. PubMed ID: 17707954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety and efficacy in geese of a PER.C6-based inactivated West Nile virus vaccine.
    Samina I; Havenga M; Koudstaal W; Khinich Y; Koldijk M; Malkinson M; Simanov M; Perl S; Gijsbers L; Weverling GJ; Uytdehaag F; Goudsmit J
    Vaccine; 2007 Nov; 25(49):8338-45. PubMed ID: 17977629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. West Nile virus and blood product safety in Germany.
    Pfleiderer C; Blümel J; Schmidt M; Roth WK; Houfar MK; Eckert J; Chudy M; Menichetti E; Lechner S; Nübling CM
    J Med Virol; 2008 Mar; 80(3):557-63. PubMed ID: 18205233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Infections caused by West Nile virus].
    Hermanowska-Szpakowicz T; Grygorczuk S; Kondrusik M; Zajkowska J; Pancewicz S
    Przegl Epidemiol; 2006; 60(1):93-8. PubMed ID: 16758745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A West Nile virus recombinant protein vaccine that coactivates innate and adaptive immunity.
    McDonald WF; Huleatt JW; Foellmer HG; Hewitt D; Tang J; Desai P; Price A; Jacobs A; Takahashi VN; Huang Y; Nakaar V; Alexopoulou L; Fikrig E; Powell TJ
    J Infect Dis; 2007 Jun; 195(11):1607-17. PubMed ID: 17471430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus and antibody dynamics in acute west nile virus infection.
    Busch MP; Kleinman SH; Tobler LH; Kamel HT; Norris PJ; Walsh I; Matud JL; Prince HE; Lanciotti RS; Wright DJ; Linnen JM; Caglioti S
    J Infect Dis; 2008 Oct; 198(7):984-93. PubMed ID: 18729783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of the protective role of human antibodies to West Nile virus (WNV) produced during natural WNV infection.
    Rios M; Daniel S; Dayton AI; Wood O; Hewlett IK; Epstein JS; Caglioti S; Stramer SL
    J Infect Dis; 2008 Nov; 198(9):1300-8. PubMed ID: 18771407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile virus: recent experience with the model virus approach.
    Kreil TR
    Dev Biol (Basel); 2004; 118():101-5. PubMed ID: 15645678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice.
    Liu WJ; Wang XJ; Clark DC; Lobigs M; Hall RA; Khromykh AA
    J Virol; 2006 Mar; 80(5):2396-404. PubMed ID: 16474146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. West Nile virus transmission through blood transfusion--South Dakota, 2006.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2007 Feb; 56(4):76-9. PubMed ID: 17268405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.