BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16118111)

  • 21. Supertrees and symbiosis in eukaryote genome evolution.
    Esser C; Martin W
    Trends Microbiol; 2007 Oct; 15(10):435-7. PubMed ID: 17884500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
    Méheust R; Zelzion E; Bhattacharya D; Lopez P; Bapteste E
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3579-84. PubMed ID: 26976593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis.
    Ishikawa M; Fujiwara M; Sonoike K; Sato N
    Plant Cell Physiol; 2009 Apr; 50(4):773-88. PubMed ID: 19224954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.
    Deschamps P; Moreira D
    Mol Biol Evol; 2009 Dec; 26(12):2745-53. PubMed ID: 19706725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of next-generation sequencing to unravelling the evolutionary history of algae.
    Kim KM; Park JH; Bhattacharya D; Yoon HS
    Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):333-345. PubMed ID: 24505071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plastid endosymbiosis, genome evolution and the origin of green plants.
    Stiller JW
    Trends Plant Sci; 2007 Sep; 12(9):391-6. PubMed ID: 17698402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromalveolates and the evolution of plastids by secondary endosymbiosis.
    Keeling PJ
    J Eukaryot Microbiol; 2009; 56(1):1-8. PubMed ID: 19335769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The puzzle of plastid evolution.
    Archibald JM
    Curr Biol; 2009 Jan; 19(2):R81-8. PubMed ID: 19174147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic perspectives on the birth and spread of plastids.
    Archibald JM
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10147-53. PubMed ID: 25902528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes.
    Moreira D; Deschamps P
    Cold Spring Harb Perspect Biol; 2014 Jul; 6(7):a016014. PubMed ID: 24984774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ring of life provides evidence for a genome fusion origin of eukaryotes.
    Rivera MC; Lake JA
    Nature; 2004 Sep; 431(7005):152-5. PubMed ID: 15356622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How do endosymbionts become organelles? Understanding early events in plastid evolution.
    Bhattacharya D; Archibald JM; Weber AP; Reyes-Prieto A
    Bioessays; 2007 Dec; 29(12):1239-46. PubMed ID: 18027391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes.
    Nowack ECM; Weber APM
    Annu Rev Plant Biol; 2018 Apr; 69():51-84. PubMed ID: 29489396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c.
    Green BR
    Photosynth Res; 2011 Jan; 107(1):103-15. PubMed ID: 20676772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Evolution of plastids: monophyly and secondary endosymbiosis].
    Nozaki H
    Tanpakushitsu Kakusan Koso; 2005 Nov; 50(14 Suppl):1833-7. PubMed ID: 16318331
    [No Abstract]   [Full Text] [Related]  

  • 36. Genomic Insights into Plastid Evolution.
    Sibbald SJ; Archibald JM
    Genome Biol Evol; 2020 Jul; 12(7):978-990. PubMed ID: 32402068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mechanism of origin and evolution of eukaryote on basis of genome analysis of a red alga Cyanidioschyzon merolae].
    Kuroiwa T
    Tanpakushitsu Kakusan Koso; 2005 Dec; 50(16 Suppl):2210-8. PubMed ID: 16411453
    [No Abstract]   [Full Text] [Related]  

  • 38. Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes.
    Nozaki H; Iseki M; Hasegawa M; Misawa K; Nakada T; Sasaki N; Watanabe M
    Mol Biol Evol; 2007 Aug; 24(8):1592-5. PubMed ID: 17488739
    [No Abstract]   [Full Text] [Related]  

  • 39. Why are plastid genomes retained in non-photosynthetic organisms?
    Barbrook AC; Howe CJ; Purton S
    Trends Plant Sci; 2006 Feb; 11(2):101-8. PubMed ID: 16406301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.
    Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF
    Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.