These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 16118210)
1. The C-terminal domain of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1, is both necessary and sufficient for phosphorylation-independent proteolysis. Chuang LC; Zhu XN; Herrera CR; Tseng HM; Pfleger CM; Block K; Yew PR J Biol Chem; 2005 Oct; 280(42):35290-8. PubMed ID: 16118210 [TBL] [Abstract][Full Text] [Related]
2. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. Chuang LC; Yew PR J Biol Chem; 2005 Oct; 280(42):35299-309. PubMed ID: 16118211 [TBL] [Abstract][Full Text] [Related]
3. Regulation of nuclear transport and degradation of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1. Chuang LC; Yew PR J Biol Chem; 2001 Jan; 276(2):1610-7. PubMed ID: 11044455 [TBL] [Abstract][Full Text] [Related]
4. Ubiquitination of cyclin-dependent kinase inhibitor, Xic1, is mediated by the Xenopus F-box protein xSkp2. Lin HR; Chuang LC; Boix-Perales H; Philpott A; Yew PR Cell Cycle; 2006 Feb; 5(3):304-14. PubMed ID: 16410731 [TBL] [Abstract][Full Text] [Related]
5. Nuclear accumulation of cyclin E/Cdk2 triggers a concentration-dependent switch for the destruction of p27Xic1. Swanson C; Ross J; Jackson PK Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7796-801. PubMed ID: 10884410 [TBL] [Abstract][Full Text] [Related]
6. The CRL4Cdt2 ubiquitin ligase mediates the proteolysis of cyclin-dependent kinase inhibitor Xic1 through a direct association with PCNA. Kim DH; Budhavarapu VN; Herrera CR; Nam HW; Kim YS; Yew PR Mol Cell Biol; 2010 Sep; 30(17):4120-33. PubMed ID: 20606006 [TBL] [Abstract][Full Text] [Related]
7. Xic1 degradation in Xenopus egg extracts is coupled to initiation of DNA replication. You Z; Harvey K; Kong L; Newport J Genes Dev; 2002 May; 16(10):1182-94. PubMed ID: 12023298 [TBL] [Abstract][Full Text] [Related]
8. Triggering ubiquitination of a CDK inhibitor at origins of DNA replication. Furstenthal L; Swanson C; Kaiser BK; Eldridge AG; Jackson PK Nat Cell Biol; 2001 Aug; 3(8):715-22. PubMed ID: 11483956 [TBL] [Abstract][Full Text] [Related]
9. Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. Movassagh M; Philpott A Cardiovasc Res; 2008 Aug; 79(3):436-47. PubMed ID: 18442987 [TBL] [Abstract][Full Text] [Related]
10. Proteolysis of Xenopus Cip-type CDK inhibitor, p16Xic2, is regulated by PCNA binding and CDK2 phosphorylation. Zhu XN; Kim DH; Lin HR; Budhavarapu VN; Rosenbaum HB; Mueller PR; Yew PR Cell Div; 2013 Apr; 8(1):5. PubMed ID: 23607668 [TBL] [Abstract][Full Text] [Related]
11. Mitotic timing is differentially controlled by A- and B-type cyclins and by CDC6 associated with a El Dika M; Wechselberger L; Djeghout B; Benouareth DE; Jęderka K; Lewicki S; Zdanowski R; Prigent C; Kloc M; Kubiak JZ Int J Dev Biol; 2021; 65(7-8-9):487-496. PubMed ID: 34549800 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2. Ungermannova D; Gao Y; Liu X J Biol Chem; 2005 Aug; 280(34):30301-9. PubMed ID: 15980415 [TBL] [Abstract][Full Text] [Related]
13. A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Vernon AE; Philpott A Development; 2003 Jan; 130(1):71-83. PubMed ID: 12441292 [TBL] [Abstract][Full Text] [Related]
14. Developmental downregulation of Xenopus cyclin E is phosphorylation and nuclear import dependent and is mediated by ubiquitination. Brandt Y; Mitchell T; Wu Y; Hartley RS Dev Biol; 2011 Jul; 355(1):65-76. PubMed ID: 21539834 [TBL] [Abstract][Full Text] [Related]
15. Depletion of the cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis. Carruthers S; Mason J; Papalopulu N Mech Dev; 2003 May; 120(5):607-16. PubMed ID: 12782277 [TBL] [Abstract][Full Text] [Related]
16. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate. Hardcastle Z; Papalopulu N Development; 2000 Mar; 127(6):1303-14. PubMed ID: 10683182 [TBL] [Abstract][Full Text] [Related]
17. The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Vernon AE; Devine C; Philpott A Development; 2003 Jan; 130(1):85-92. PubMed ID: 12441293 [TBL] [Abstract][Full Text] [Related]
18. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Li C; Andrake M; Dunbrack R; Enders GH Mol Cell Biol; 2010 Jan; 30(1):116-30. PubMed ID: 19858290 [TBL] [Abstract][Full Text] [Related]
19. Identification of the nuclear localization signal in Xenopus cyclin E and analysis of its role in replication and mitosis. Moore JD; Kornbluth S; Hunt T Mol Biol Cell; 2002 Dec; 13(12):4388-400. PubMed ID: 12475960 [TBL] [Abstract][Full Text] [Related]
20. Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Yew PR; Kirschner MW Science; 1997 Sep; 277(5332):1672-6. PubMed ID: 9287222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]