These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 16118421)

  • 21. Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold.
    Piper PW; Talreja K; Panaretou B; Moradas-Ferreira P; Byrne K; Praekelt UM; Meacock P; Récnacq M; Boucherie H
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3031-8. PubMed ID: 7812443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of subcellular fractionation procedures for the yeast Saccharomyces cerevisiae.
    Rieder SE; Emr SD
    Curr Protoc Cell Biol; 2001 May; Chapter 3():Unit 3.7. PubMed ID: 18228359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid composition and proton transport in Penicillium cyclopium and Ustilago maydis plasma membrane vesicles isolated by two-phase partitioning.
    Hernández A; Cooke DT; Clarkson DT
    Biochim Biophys Acta; 1994 Oct; 1195(1):103-9. PubMed ID: 7918550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The phosphoinositol sphingolipids of Saccharomyces cerevisiae are highly localized in the plasma membrane.
    Patton JL; Lester RL
    J Bacteriol; 1991 May; 173(10):3101-8. PubMed ID: 1827112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae.
    Suresh HG; da Silveira Dos Santos AX; Kukulski W; Tyedmers J; Riezman H; Bukau B; Mogk A
    Mol Biol Cell; 2015 May; 26(9):1601-15. PubMed ID: 25761633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force measurements on natural membrane nanovesicles reveal a composition-independent, high Young's modulus.
    Calò A; Reguera D; Oncins G; Persuy MA; Sanz G; Lobasso S; Corcelli A; Pajot-Augy E; Gomila G
    Nanoscale; 2014 Feb; 6(4):2275-85. PubMed ID: 24407152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation of giant plasma membrane vesicles for evaluation of plasma membrane structure and protein partitioning.
    Levental KR; Levental I
    Methods Mol Biol; 2015; 1232():65-77. PubMed ID: 25331128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction of yeast lipids.
    Schneiter R; Daum G
    Methods Mol Biol; 2006; 313():41-5. PubMed ID: 16118423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soluble proteins, an often overlooked contaminant in plasma membrane preparations.
    Bérczi A; Asard H
    Trends Plant Sci; 2003 Jun; 8(6):250-1. PubMed ID: 12818657
    [No Abstract]   [Full Text] [Related]  

  • 30. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.
    Grillitsch K; Tarazona P; Klug L; Wriessnegger T; Zellnig G; Leitner E; Feussner I; Daum G
    Biochim Biophys Acta; 2014 Jul; 1838(7):1889-97. PubMed ID: 24680652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae.
    Rieder SE; Emr SD
    Curr Protoc Cell Biol; 2001 May; Chapter 3():Unit 3.8. PubMed ID: 18228360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane protein expression and analysis in yeast.
    Claes K; Guerfal M; Callewaert N
    Methods Enzymol; 2015; 556():123-40. PubMed ID: 25857780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patchwork organization of the yeast plasma membrane into numerous coexisting domains.
    Spira F; Mueller NS; Beck G; von Olshausen P; Beig J; Wedlich-Söldner R
    Nat Cell Biol; 2012 Apr; 14(6):640-8. PubMed ID: 22544065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell wall fractionation for yeast and fungal proteomics.
    Pitarch A; Nombela C; Gil C
    Methods Mol Biol; 2008; 425():217-39. PubMed ID: 18369900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of spt23 in Saccharomyces cerevisiae thermal tolerance.
    Lu Z; Wu Y; Chen Y; Chen X; Wu R; Lu Q; Chen D; Huang R
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3691-3705. PubMed ID: 35476152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide.
    Bento-Oliveira A; Santos FC; Marquês JT; Paulo PMR; Korte T; Herrmann A; Marinho HS; de Almeida RFM
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32517183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity.
    Wong JH; Spartz AK; Park MY; Du M; Gray WM
    Plant Physiol; 2019 Sep; 181(1):353-366. PubMed ID: 31311832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.
    Palmgren M; Hernebring M; Eriksson S; Elbing K; Geijer C; Lasič S; Dahl P; Hansen JS; Topgaard D; Lindkvist-Petersson K
    J Membr Biol; 2017 Dec; 250(6):629-639. PubMed ID: 28914342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots.
    Nguyen TT; Volkening JD; Rose CM; Venkateshwaran M; Westphall MS; Coon JJ; Ané JM; Sussman MR
    FEBS Lett; 2015 Aug; 589(17):2186-93. PubMed ID: 26188545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis.
    Spartz AK; Ren H; Park MY; Grandt KN; Lee SH; Murphy AS; Sussman MR; Overvoorde PJ; Gray WM
    Plant Cell; 2014 May; 26(5):2129-2142. PubMed ID: 24858935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.