These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16118484)

  • 1. Hyperglycemia inhibits the uptake of dehydroascorbate in tubular epithelial cell.
    Chen L; Jia RH; Qiu CJ; Ding G
    Am J Nephrol; 2005; 25(5):459-65. PubMed ID: 16118484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells.
    Song JH; Shin SH; Wang W; Ross GM
    Exp Neurol; 2001 Jun; 169(2):425-37. PubMed ID: 11358456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are diabetic neuropathy, retinopathy and nephropathy caused by hyperglycemic exclusion of dehydroascorbate uptake by glucose transporters?
    Root-Bernstein R; Busik JV; Henry DN
    J Theor Biol; 2002 Jun; 216(3):345-59. PubMed ID: 12183123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S; Cárcamo JM; Golde DW
    FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis.
    Maeda S; Matsui T; Takeuchi M; Yamagishi S
    Diabetes Metab Res Rev; 2013 Jul; 29(5):406-12. PubMed ID: 23508966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level.
    Dang J; Jia R; Tu Y; Xiao S; Ding G
    Biomed Pharmacother; 2010 Dec; 64(10):681-5. PubMed ID: 20685070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc modulates high glucose-induced apoptosis by suppressing oxidative stress in renal tubular epithelial cells.
    Zhang X; Zhao Y; Chu Q; Wang ZY; Li H; Chi ZH
    Biol Trace Elem Res; 2014 May; 158(2):259-67. PubMed ID: 24591003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells.
    Kim YJ; Kim YA; Yokozawa T
    Toxicology; 2010 Apr; 270(2-3):106-11. PubMed ID: 20149835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species-mediated endoplasmic reticulum stress contributes to aldosterone-induced apoptosis in tubular epithelial cells.
    Ding W; Yang L; Zhang M; Gu Y
    Biochem Biophys Res Commun; 2012 Feb; 418(3):451-6. PubMed ID: 22281495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitated glucose and dehydroascorbate transport in plant mitochondria.
    Szarka A; Horemans N; Bánhegyi G; Asard H
    Arch Biochem Biophys; 2004 Aug; 428(1):73-80. PubMed ID: 15234271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H; Goldenberg H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glutamate on dehydroascorbate uptake and its enhanced vulnerability to the peroxidation in cerebral cortical slices.
    Song JH; Shin SH; Chung IM
    Exp Mol Med; 2002 Dec; 34(6):419-25. PubMed ID: 12526083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases.
    Allen DA; Harwood S; Varagunam M; Raftery MJ; Yaqoob MM
    FASEB J; 2003 May; 17(8):908-10. PubMed ID: 12670885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of oxidant stress and antioxidant protection in acephate-induced renal tubular cytotoxicity.
    Poovala VS; Kanji VK; Tachikawa H; Salahudeen AK
    Toxicol Sci; 1998 Dec; 46(2):403-9. PubMed ID: 10048144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of reactive oxygen species in transforming growth factor-beta1-induced extracellular matrix accumulation in renal tubular epithelial cells.
    Rhyu DY; Park J; Sharma BR; Ha H
    Transplant Proc; 2012 Apr; 44(3):625-8. PubMed ID: 22483454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells.
    Wilson-O'Brien AL; Dehaan CL; Rogers S
    Endocrinology; 2008 Mar; 149(3):917-24. PubMed ID: 18039784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells.
    Phillips AO; Steadman R; Morrisey K; Williams JD
    Am J Pathol; 1997 Mar; 150(3):1101-11. PubMed ID: 9060845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosiglitazone increases PPARgamma in renal tubular epithelial cells and protects against damage by hydrogen peroxide.
    Sommer M; Wolf G
    Am J Nephrol; 2007; 27(4):425-34. PubMed ID: 17622750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart.
    Nishio S; Teshima Y; Takahashi N; Thuc LC; Saito S; Fukui A; Kume O; Fukunaga N; Hara M; Nakagawa M; Saikawa T
    J Mol Cell Cardiol; 2012 May; 52(5):1103-11. PubMed ID: 22394624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.